如何解读链式中介作用分析结果?

中介作用是研究自变量X对因变量Y的影响时,是否会先通过中介变量M,再去影响Y。比如工作满意度(X)会影响到创新氛围(M),再影响最终工作绩效(Y)。

在中介作用研究中,如果自变量与因变量之间存在多个中介变量被称为多重中介模型。

 

一、基本类型

根据中介变量之间是否有影响关系又可分为两种类型。

并行中介模型:并行多重中介模型,中介变量之间互不影响

链式中介模型:链式多重中介模型,中介变量之间相互影响

目前比较常见的是Bootstrap法进行中介效应检验。

 

二、多重中介操作方法

(1)并行中介基于SPSSAU的操作:

 

①登录SPSSAU上传数据;

②在SPSSAU左侧仪表盘选择[问卷研究]--[中介作用];

③拖拽相应的变量到对应分析框;中介变量可同时放入多个;

④[中介类型]选择“平行中介”;

⑤点击开始分析。

 

SPSSAU中介作用分析

 

结果分析

上表是对中介作用分析结果的基本汇总。本次研究以X作为自变量,M1、M2作为中介变量,Y为自变量进行分析。本次中介效应分析共涉及共4个模型,模型方程分别如下:


Y=2.835+0.408*X
M1=2.093+0.541*X
M2=1.152+0.776*X
Y=1.611+0.038*X+0.524*M1+0.110*M2

 

上表是以Bootstrap法进行中介检验,分别对应两条路径结果:X->M1->Y 和 X->M2->Y;

如果置信区间不包括0,那么中介作用显著,支持有中介作用的假设; 如果包括0,则不显著,不支持有中介作用的假设。

 

本研究中,总体中介效应为:0.369,中介模型检验结果的置信区间不包括0,说明中介模型成立。

分别对两条路径分别进行中介效应检验。首先看X->M1->Y这条路径,bootstrap 95%置信区间为0.337~0.498,不包括0,说明X对Y影响时M1的中介效应显著。中介效应为0.284。

接着看X->M2->Y这条路径,bootstrap 95%置信区间为0.033~0.221,检验结果不包括0,说明X对Y影响时M2的中介效应显著。中介效应为0.085。

上表为中介作用效应量结果汇总表格。如果中介效应显著,可在此表中进一步查看中介作用的效应占比。

 

(2)链式中介基于SPSSAU的操作:

 

①登录SPSSAU上传数据;

②在SPSSAU左侧仪表盘选择[问卷研究]--[中介作用];

③拖拽相应的变量到对应分析框;中介变量可同时放入多个;

④[中介类型]选择“链式中介”(默认为并行中介);

⑤点击开始分析。

 

SPSSAU中介作用分析

 

结果分析

上表是对中介作用分析结果的基本汇总。本次研究以X作为自变量,M1、M2作为中介变量,Y为自变量进行分析。本次中介效应分析共涉及共4个模型。

上表为中介效应分过程汇总表格,输出包括中介效应、间接效应和总效应等结果。

如果置信区间不包括0,那么中介作用显著,支持有中介作用的假设; 如果包括0,则不显著,不支持中介作用的假设。

 

其中,总效应bootstrap95%置信区间为0.331~0.484,检验结果不包括0,说明总效应显著直接效应95%置信区间为-0.055~0.132,检验结果包括0,说明直接效应不显著

间接效应需要结合两条或多条路径回归模型的结果值相乘得到,比如中介变量M时,X->M和M->Y的效应值相乘,即得到间接效应值,间接效应值进行Bootstrap抽样检验,最终验证是否存在中介效应。间接效应结果可通过下面的间接效应分析表格进行查看。

使用Bootstrap抽样检验法进行中介效应研究,抽样次数为5000次,结果显示:

针对链式中介效应路径进行分析,针对‘X⇒M1⇒M2⇒Y’这条中介路径来看, 95%区间并不包括数字0(95% CI:0.003~0.021),因而说明此条中介效应路径存在。

针对‘X⇒M1⇒Y’这条中介路径来看, 95%区间并不包括数字0(95% CI:0.332~0.431),因而说明此条中介效应路径存在。
针对‘X⇒M2⇒Y’这条中介路径来看, 95%区间并不包括数字0(95% CI:0.051~0.077),因而说明此条中介效应路径存在。

### 实现链式中介效应模型的R语言教程 在统计分析领域,链式中介效应模型用于评估多个连续变量之间的间接影响路径。为了实现这一目标,在R语言中有多种方法可以采用。 #### 使用`mediation`包构建链式中介效应模型 `mediation`包提供了强大的工具来估计和测试各种类型的中介效应模型,包括简单的单层中介以及更复杂的多层或链式中介结构[^1]。 安装并加载必要的库: ```r install.packages("mediation") library(mediation) ``` 准备数据集,假设有一个名为`data`的数据框,其中包含自变量X、因变量Y及两个潜在的中介变量M1和M2: ```r # 假设 data 是已经存在的数据框对象 head(data) # 结果可能如下所示: # X M1 M2 Y # 1 0.78 -0.69 -0.45 0.34 # ... ``` 定义回归方程以描述各个变量间的关系: ```r model.X_to_M1 <- lm(M1 ~ X, data=data) # 自变量到第一个中介变量 model.M1_to_M2 <- lm(M2 ~ M1 + X, data=data) # 考虑前一阶段的影响后的第二个中介变量 model.all_to_Y <- lm(Y ~ M1 + M2 + X, data=data) # 所有预测因子对最终结果作用 ``` 调用`mediate()`函数计算总的间接效果及其组成部分: ```r med.fit <- mediate(model.X_to_M1, model.all_to_Y, treat="X", mediator="M1", boot=TRUE, sims=1000) summary(med.fit) confint(med.fit) plot(med.fit) ``` 对于涉及更多层次的链式中介情况,则需重复上述过程,依次加入新的中间变量直到完成整个链条的设计。 当涉及到三个甚至更多的连续中介变量时,可以通过嵌套的方式逐步扩展此框架,每次只处理一对相邻节点间的直接联系,并累积这些局部关系形成完整的因果路径图景。 #### 验证与解释结果 通过以上步骤获得的结果应当仔细审查其显著性和实际意义。特别注意的是,即使某些部分显示出统计学上的重要性,也应谨慎解读它们的实际应用价值。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值