SPSSAU新功能如何使用?

SPSSAU最近更新完善了许多有用的功能,这里和大家分享一下~

一、图表颜色自定义

SPSSAU看到小伙伴们的建议,现在已经支持自定义设置图表啦~

01 图表颜色自定义

如果你分析数据时得到了一个折线图:

觉得系统自动生成的折线颜色不是很好看,此时可以根据自己的需求调色~

点击图表下方的【样式】按钮,选择【自定义】

点击颜色块调出调色盘,就可以在调色盘中选择自己想要的颜色:

我们改成红色效果:

也支持手动输入颜色的代码,点击下图中的上下小箭头,可以切换RGB、HSL和十六进制颜色码:

02 自定义图表坐标轴颜色

除了可以修改图内容本身的颜色,我们也提供了修改坐标轴颜色的功能,在修改样式中点击下图坐标轴位置的颜色块,调出调色盘,选择自己想要的颜色。

我们把黑色的坐标轴改成红色效果:

二、批量处理标签

SPSSAU还增加了一个很实用省事的功能,有时候我们修改数据标题时,不想一个一个修改,想要快速一次性所有的标题都修改,那么就可以用到这个批量修改功能。

比如我们需要把上图中的6个变量数据名称批量进行修改,就可以这么做:

01 准备好新标题

首先提前准备好要修改成什么样的标题,可以在Excel表格中写好~

02 复制下新标题

Excel中复制所有标题,回到SPSSAU页面。

03 粘贴修改标题

点击【数据处理】-【数据标签】-【批量修改】,把刚才复制的要修改的标题粘贴到对应位置:

点击确定修改,即可批量完成修改所有标题。

三、筛选样本提醒

数据处理,筛选样本时增加了筛选状态提醒功能,如下图,当我们正常筛选样本,填入筛选条件,点击确定筛选。

页面上方筛选完成后系统会自动提示一下筛选后的样本量。

四、自定义填补异常值

数据处理时,经常要进行异常值的处理,一份数据中异常值如果太多,有时候直接删除不太合适,就需要填补。SPSSAU以前支持使用平均数、中位数、众数、随机数、数字0填补。

然而根据实际分析数据的需要,有时候会想要自己定义一个特定的数字进行填补,这样的操作呢,SPSSAU现在也支持啦,研究人员可以像下面这样操作~ 完成对异常值的自定义数据填补。

五、 提问删除&未读提示

另外,在提问页面更新了两个小细节功能,也和大家说说。

01 提问删除

第一个是,大家在客服中心的【人工客服】处提问的问题,问题解决之后可能不需要再看见这些已经提出的问题,近期新增了删除提问的功能,对于没有用的问题就可以点击具体提问后面的垃圾筐小图标删除掉~

02 未读提示

另外一个新增小细节是,大家所提出的提问,如果被人工客服回复,自己还未查看的,问题前会有一个红点提示,方便与已经阅读过的提问回答区分开来。

六、 数据编码标签提示

为了大家在对数据编码的时候,方便分辨数字所代表的具体意义,SPSSAU增加了数据编码时同时显示数据标签文字提示。

比如我们对一份问卷调查的数据中的【学历】变量数据先进行了数据标签操作,让数字1、2、3、4分别表示专科及以下、本科、研究生、研究生以上的意义:

那么接下来我们再对这个变量数据重新编码操作的时候,可以看到也会在每一个数字后显示对应的标签意义,更方便我们重新编码:

像上图,当分析过程中,突然不想要分成四类,需要只将本科和专科及以下的编为一组,将研究生及研究生以上编为一组,那么通过数字后的标签文字的提示,很容易可以确认,前面两个用1来表示,后面两个用2表示就可以了。

七、我的账号管理

如果需要查看自己账号会员信息,可以在SPSSAU首页,右上角【我的头像】-【我的账号】进入我的账号页面。

页面如下:

在这里可以查看自己的会员情况,比如是什么会员类型啊,什么时候会员到期。

还可以查看自己拥有的所有的抵扣码,是否使用了,什么时候到期。

抵扣码的获取有两个途径,可以在开通会员处购买,也可以参加SPSSAU活动领取。

### SPSSPRO 的使用教程与下载 SPSSPRO 是一款功能强大的数据分析工具,支持多种数据预处理技术以及统计建模方法。以下是关于其使用教程和下载的信息: #### 数据预处理中的常见方法 在 SPSSPRO 中,可以通过内置的功能实现数据的去量纲化操作,这些方法包括但不限于 min-max 标准化、z-score 标准化、归一化和中心化等[^1]。具体而言: - **Min-Max 标准化**:将原始数据线性变换到指定范围(通常是 [0, 1]),适用于对极端值不敏感的情况。 - **Z-Score 标准化**:基于均值和标准差进行标准化,使数据分布具有零均值和单位方差。 - **虚拟变量转换**:用于将分类变量转化为数值型变量以便于后续分析。 #### SPSSPRO 使用教程 对于初学者来说,可以按照以下方式学习如何使用 SPSSPRO 进行数据分析: 1. 安装并启动软件后,导入所需的数据文件(如 CSV、Excel 等格式)。 2. 利用界面友好的向导完成基本设置,例如定义变量属性或筛选特定记录。 3. 应用上述提到的各种数据预处理手段来优化输入数据集的质量。 4. 执行高级统计测试或者机器学习算法训练模型,并评估性能指标。 #### 关于 SPSSPRO 的获取途径 目前官方并未提供免费版本供公众随意下载;如果需要正式授权版,则建议访问官方网站查询最新价格方案及试用机会链接地址。此外,在某些教育机构内部可能也会有合法分发渠道给学生教师群体享用有限期使用权。 ```python # 示例代码展示如何加载CSV文件至Pandas DataFrame对象中准备进一步加工前处理工作流程演示片段如下所示: import pandas as pd dataframe = pd.read_csv('example.csv') print(dataframe.head()) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值