机器学习理论及案例分析(part3)--聚类

本文深入探讨了聚类在机器学习中的重要性,详细介绍了聚类的基本概念、分类和典型算法如k-means,强调了高维数据的维度灾难问题。此外,还探讨了深度学习在聚类中的应用,包括自动编码器,并分析了深度聚类的相关论文。

学习笔记,仅供参考,有错必纠
博客阅读索引:博客阅读及知识获取指南
上一节:回归



聚类


什么是聚类

聚类是无监督学习的主要任务

聚类一直是机器学习、数据挖掘、模式识别等领域的重要组成内容。2015年,中国人工智能学会理书长李德毅院士指出:人类的认知科学要想有所突破,首先就要在人数据聚类上取得突破,聚类是挖掘大数据资产价值的第一步。

和分类(监督学习的主要任务)不同,聚类是在无标记样本的条件下将数据分组,从而发现数据的天然结构,聚类在数据分析中扮演重要角色,它通常被用于以下三个方面:

  • 发现数据的潜在结构
  • 对数据进行自然分组
  • 对数据进行压缩

这几个方面的功能使聚类既可以作为预处理程序,又可以作为独立的数据分析工具。

聚类描述

数据聚类(或聚类分组)的目标是在一个对象(模式、数据点)的集合中发现其自然的分组。关于聚类目前尚无统一的定义,比较常用的定义如下:聚类是把一个数据对象的集合划分成簇(子集),使簇内对象彼此相似,簇间对象不相似的过程。

  • 回答什么是簇这个根本性问方面,人们已经做了大量努力。给定一个数据集

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

GUI Research Group

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值