实证资产定价(Empirical asset pricing)已经发布于Github. 包的具体用法(Documentation)博主将会陆续在CSDN中详细介绍。
Github: GitHub - whyecofiliter/EAP: empirical asset pricing
动量因子始于Jegadeesh and Titman(1993)。此效应广泛存在于全球股票市场(Jegadeesh and Titman, 2001;Rouwenhorst, 1998, 1999; De Groot et al., 2012;Asness et al., 2013)以及其他市场,如商品市场(Narayan et al., 2015)和债券市场(Isreal et al., 2018)。然而,在中国股市中,有人认为不存在这种影响(Liu and Lee, 2001; Li et al., 2010)。
动量效应很直观,过去表现良好的股票将在未来继续表现良好,反之亦然。动量效应的传统替代变量是过去12个月到过去1个月的总收益率(不包括当月)。由于可能存在短期反转效应,不包括上月收益率。
在本demo中,选择了前面文本中的常规代理变量。数据集始于2000年1月,从CSMAR数据集中收集。警告:请勿将此演示中的数据集用于任何商业目的。
# %% import package
import pandas as pd
import sys, os
sys.path.append(os.path.abspath(".."))
# %% import data
# Monthly return of stocks in
本文探讨了动量因子(Momentum factor)在投资组合分析中的应用,特别是在金融市场的实证研究。通过分析历史数据,发现动量效应在全球股票、商品和债券市场中普遍存在,但在某些特定市场如中国股市存在争议。文章使用Python进行数据处理,构建动量效应代理变量,并对数据进行预处理,最终得出在单变量和双变量分析中,动量因子未能显著提供超额收益的结论。
订阅专栏 解锁全文
1206





