[论文笔记]Exploiting Moving Intelligence: Delay-Optimized Computation Offloading in Vehicular Fog Net

前言

这篇文章是以车载设备的运算能力足够强作为前提的,因为车载UE能力够强,所以需要将其有效的组织起来,所谓组织就是当有的UE算不过来的时候,其他兄弟要能帮他计算。应用场景中提到了协同感知,将其定义为安全性应用,硬延迟上限500ms。

文中有个很新奇的点就是讨论了高移动性这个常扮黑脸的人对系统可以带来的好处,主要是:高移动性让车接触其他车的机会变多了,接触不同车的时间间隔变小了。这个说辞有效的证明就是:吞吐量最大时的车速,比时延最小的车速要小,也就是说

从利用移动性出发,文章提出了三个有趣的方法:1.为应对车载网络中影响因素多,事变性强的问题,本来一些决策应该先观察信道再做出,我就不观察了,直接进行尝试并记录结果,根据这个结果改善决策,即边执行边学习;2.编码计算,就是把车的任务给分成n个小任务,再编码成m(>n)个小任务,分配给m个车执行,只要有n个完成了执行那任务就完成了;3.卸载复制:把同一个任务部署到多个节点执行,总有一个比较快的可以尽早完成(以不至于超越时延上限),这时的问题就是如何平衡可靠性和资源利用率了。


未来的汽车将具备更加丰富的资源来支持自动驾驶的应用,而无线通信技术将被用来建立连接。因此,车辆雾网(VeFNs)被提出,其通过任务卸载的方式实现计算资源的共享,并提供了广泛的雾应用。然而车辆的高机动性让任务卸载既要考虑通信又要考虑计算时延的需求。本文中首先回顾了VeFN中任务卸载的现状,然后讨论了移动性作为实时性计算的障碍外,还有提升延迟的可能。其次,我们将通过ML方法和编码计算作为解决何利用VeFN中高移动性的关键技术,通过实例研究展示了如何利用移动新来优化系统性能。

结论

本文首先通过最新的文献综述介绍了VeFN的概念,并讨论了在VeFN中利用移动性辅助实时计算的可能,具体手段包括ML和编码计算等,并通过两个案例说明了他们在VeFN中的最初应用。通过基于MAB的学习算法和任务复制,证明了VeFN具有较低的平均时延和较低的误码率,但距离真正实现VeFN对于移动性的支持还有一段距离。

首先,对任务的划分在任务卸载中起着重要作用,考虑到计算资源的异构性,对于任务的划分将有助于优化资源利用和平衡工作负载。

其次,移动性预测(无论是基于模型的还是机器学习的学习的),都可以通过主动的资源配置或计算资源预约来减少卸载延迟。因此,对不同时间生成的任务进行编码计算也值得研究。

最后,传统的加密和身份验证方案在具有高动态性的VeFN中执行起来可能过于缓慢,特别是对于延迟敏感的应用。因此,保证·任务卸载的安全性和私密性的新设计,可能引出一个理解移动性的新维度。

介绍

自动驾驶的兴起导致未来的汽车中除了车载传感器的增多,势必将配备更为强大的计算能力,以支持数据处理和决策。而由于独立自动驾驶的事故时有发生,安全和可靠的自动驾驶离不开车辆之间或者车辆和RSU(路侧设施)之间的有效互动和协作。无线通信技术作为支持V2V和V2I的关键技术,可以提供安全警号或道路情况等关键信息。由此车辆可以扩展其感知范围,还可以联合处理2感知数据并协调驾驶行为的决策。其结果为更精确的是被环境以及对车辆的鲁棒控制,从而实现更安全的自动驾驶和更高效的道路交通。

在车联雾网(VeFN)中,每个车辆都具备服务器级别的计算能力,因此每个车辆将作为雾节点为网络整体贡献自己的计算资源。浙江促进许多自动驾驶以外的应用,如:乘客可以利用自己车辆或相邻车辆过剩的计算能力进行任务卸载,克服MEC中的设备限制。行人也可以通过RSU访问VeFN。为此,VeFN将雾(作为服务提供者)和车(作为基础设施)联系起来,提供随时随地的计算服务,在AI时代将有很大的发展前景。

在自动驾驶和其他计算卸载的应用中,同时考虑计算和传输延迟对QoS的要求是很高的。这是因为车辆网络中的高移动性和网络的点对点连接受到许多随机因素的影响,这对联合优化无线和计算资源带来了很大困难。此外,自适应的优化需要最新的信道状态信息和计算能力,这也是很难获得的。

然而移动性也有其有利的一面,如[5]所述,移动性通过增加节点之间的连接概率来增加无线自组网的容量。[6,7]提出,移动性可以增加下载成功率。我们先新移动新对于VeFN中任务的卸载也是有帮助的,比如,具有多余计算资源的车辆的出现在目标用户周围的概率将随着车辆速度的增加而增加。在此背景下,需要关注的就是如何保证卸载延时和利用由移动性带来的多样性,

本文首先介绍了VeFN的概念和相应的延迟要求,回顾了车辆网络中高动态环境下云计算的现状。第二节中,提出了VeFN架构中的三种主要计算卸载模式并分析了其优点和挑战。然后讨论了移动性带来的挑战和机遇,提出了两个关键的解决方案,即学习的同时进行计算卸载和编码计算,以优化卸载延迟。通过两个案例研究,分别解决和利用了VeFN的移动性。第一个案例通过修改现有的学习算法使其能使用不断变化的网络拓扑和工作负载,并通过过结合编码计算提高了服务的可靠性;第二个案例对最优的任务复制策略进行了推到,提供了优化延迟性能的平衡分配资源的方法。

车辆雾网:结构和最新进展

VeHN整合了车辆和RSU的计算资源,为车辆和移动用户提供了多种基于雾计算的服务和应用。如图1所示,RSU和车辆(移动中和停靠中的均可)可以提供计算资源,这些实体在结构中称之为雾节点。不同的工作负载和延迟需求的计算任务由客户端节点(包括需要额外计算支持的车辆、车载UE、行人等)生成,这些任务由客户端节点卸载到VeFN进行处理。这里需要注意的是,每个车辆既可以作为雾节点也可以作为客户端节点,其角色可以随时间变化,这取决于它是否有多余的计算共享给网络或需要从网络索取计算资源。

表1总结了VeFN中典型应用及延迟需求,数据来自[2]和3GPP TR22.886。对于任务卸载来说,延迟是关键指标,由三个部分组成:上传时延(与需要处理的数据大小相关)、计算时延(与输入大小和计算复杂度相关)、下载时延(与输出数据大小相关)。这些延迟都受到通信带宽和雾节点计算嗯那个里的影响。对于延迟关键的应用,硬延迟界表示应用可润许的最长的延迟。对于延迟-容忍的应用,没有明确的截至延迟,但是及时的反馈仍然是有力的,这类的应用包括:交通流优化、娱乐、IoT应用。平均卸载延迟仍可作为性能指标。

VeFN的架构和卸载模式

VeFN中,计算资源是分散的,这带来了多种的写在途径。为支持数据在客户端节点和雾节点之间传输,IEEE 802.11P的DSRC和LTE-V都可以使用。行人通过3G或4G接入RSU,车上的UE可以通过蓝牙将任务转移到车上,如图1所示,VeFN中的计算任务卸载分为三种模式:

【V-V卸载】

车直接将计算任务卸载到邻近的雾节点汽车。这种情况下,每个客户车辆首先在通信范围内搜索可用的雾节点车。为保持较长的接触时间,需要考虑移动方向和速度,V2X通信可协助获得这些信息。多个雾车可以同时被使用。客户车容量以分布式的方式独立决定选择哪些雾车,因为对于其附近的全局信息是很难获得的,并且可能没有一个集中的实体来执行这样的决定。

【V-I-V卸载】

当周围的雾车无法提供客户车辆所需的计算资源时,任务可被卸载到附近的RSU。RSU可使用自己的计算资源执行计算任务或者将任务分配给其覆盖范围内的其他fog车辆。RSU能掌握更多关于通信带宽和子酸资源的信息。因此,集中式的任务分配可以用来进行计算资源的利用率和QoS的优化。计算结果最终通过相关的RSU传输回客户端车辆。

【P-I-V卸载】

行人与车辆的接触时间往往很短,因此这种情况下可由RSU收集计算任务。这些任务由他们自己处理或卸载到雾车。关于计算结果,若雾车已经离开初始RSU的覆盖范围,则可反馈到就近的RSU,然后通过回程将计算结果返回到初始RSU。

车辆网络计算的最新进展

近期关于VeFN资源管理的研究有很多。研究人员首先评估使用车辆作为雾节点的可行性。[1]利用北京和上海车辆的轨迹数据分析了车辆的通信和计算能力。仿真现实停放车辆和移动车辆的通信和计算资源都有很大潜力来增强静态雾计算网络。

为实现灵活的计算资源管理,[10]提出了一个集中式车辆云(VC)控制器进行定期收集车辆的移动和资源情况,估计他们的瞬时位置计算负载,并且分配计算和带宽资源。[11]考虑了将移动车辆组织成成动态VC,任务由中央控制器手机并分配给雾车,这样虽然可以最大限度提高效用(由延迟、能耗、资源占用相关),但是使用集中式架构需要保持对整个系统的瞬时状态的掌握,这可能会导致较高的信令开销,从而难以在实际系统中实现。

任务卸载决策也可以由每个客户节点以分布式的方式独立做出,与V-V卸载模式对应,[12]提出了一个分布式VeFN架构,其中RSU和车辆使用分布式决策将任务转移到其相邻节点,其以优化延迟相关的写在任务的总效用为目标。缺点在于其将RSU和车同等对待,但是实际RSU往往更了解网络条件,应该得到更有效的利用。

移动性:对于卸载延迟的亦敌亦友

车辆的移动性给网络带来了高度的动态性和不稳定性,这给通信带来了挑战和机遇。下面对其优和弊进行分析,并确定了利用移动性的方法。

作为阻碍的一面

移动性给卸载任务的延迟性能带来了更多的随机性和不确定性。首先VeFN因为网络拓补的时变性强,其可看作是一个间歇性连接的无线网络,并且V2X的连接持续时长非常有限。这本质上是由于无线通信范围有限和车辆高机动性导致的,这些因素极大限制了VeFN的有效性。其次,无线信道状态和V2X通信过程中的干扰时变性也很大,这是由于相对速度、相邻车辆的传输功率、散射导致的,很难对其建模或预测;第三,与MEC系统类似,计算任务的随机性也很大,其具有不同的延迟要求和工作负载,这些因素给卸载决策和资源分配带来了挑战,这些挑战尤其对哪些具有硬延迟边界的应用和安全相关的应用很重要。

作为助力的一面

然而,间歇性的连接可以通过车辆的移动性来克服。以下三个因素可以说明这点:

【移动性将增加接触的可能性】

[5]指出,在一个间歇链接的网络中,节点的移动性是有利的,因为流动性创造了更多接触其他节点的机会,因此节点之间的通信和任务卸载概率也增加了。接触多了可以更方便的找到可以卸载计算的对象,但是接触不同的节点时所需的切换时间会不会长,信令开销会不会大,

【移动性降低了接触时间间隔】

许多VeFN应用依赖V2V和V2I之间的连续通信,因此任务的输入和输出可以分开各自通信。所以,卸载延迟与接触时间间隔显著相关。而车辆移动可以减少时间间隔进而减少卸载延迟。车在RSU A接收到了任务,然后就移动出了那个A的覆盖范围,这时需要连接下一个RSU进行数据的输出,因此接触时间间隔是很重要的。

【车辆位置的可预测性】

尽管车辆的机动性很高,但是其轨迹仅限于道路,并且速度于交通条件高度相关,因此通过预测车辆位置进行基于预测的任务卸载。

如何解决和利用移动性

为开发移动性带来的潜力,同时减少信息收集和在线决策的时间开销,使用机器学习方法跟踪系统动态,此外我们确定了一组符合编码计算该年的解决方案,此方案可提高计算可靠性和资源利用率。

【边下载边学习】

因为车载网络中通信影响因素多、事变性强,所以对卸载延迟的建模和预测十分复杂,特别是分布式任务卸载。提出的解决方法为:不再尝试获取所有状态信息进而选择雾节点进行计算卸载,而是直接卸载并在卸载中观察延迟进而进行候选节点的选择优化,也就是说环境是在任务被卸载时学习的。这种学习算法具有低复杂度和快速收敛性,以跟踪动态的环境。这其中也应该对wxploration-exploitation进行权衡:即探索关于候选雾车更多并获得更换准确的估计信息 or 选择一致的最好的雾车以最小化瞬时卸载延迟。这里需要注意学习算法的优化目标为减少regret,其含义为学习算法的表现与genie-aided最优解法的差别。

MAB[13]是一种有前途的动态学习的方法,在经典的MAB中,决策者面对固定数量的候选行为,将会逐一尝试并观察奖励进而了解不同候选行为的后果。然而,现有的MAB算法因为车联网络拓扑的不固定型,作为候选的雾车list将会实时变化。此外,任务的工作负载的时变性在原有的MAB问题中也是没有考虑的,因此我们对MAB算法进行了修改并在第一个案例研究中进行了说明。

此外,还可采用监督学习的方法预测车辆的移动,饥饿难忍更好的分配计算资源和带宽资源。(其实这也是个老生常谈的问题了)。例如:车辆可预测与那些车辆接触时间更长,RSU也预测切换的发生进而提前提取计算资源或迁移一些客户车辆的计算服务。

【编码计算】

移动性让每个雾节点的计算服务不可信赖的同时,其实也为客户端节点提供了与更多雾节点建立联系的机会。为了将计算资源的荣誉变现为可靠性的提升,编码计算是一个有效的工具。考虑一个(n ,m)最大距离可分(MDS)编码方案,假设有n个雾节点可以为一个客户节点提供计算服务,则使用最小延迟编码技术将一个任务分解为m(m\leqslant n)个 任务,编码为n个编码任务,之后卸载到n个雾节点。一旦有m个计算结果成功返回,任务就完成了。

VeFN中的编码计算示例如图2所示,三个雾节点(两个雾车和一个雾RSU)可以为客户车提供服务。将矩阵乘法任务的输入数据分解为两个子矩阵并编码为三个子任务。如果三个雾节点中的两个完成了任务就可与成功的计算原始任务。雾节点之间的协作可以促进更好的利用计算资源,由此解决移动性带来的不确定性(如间歇性连接)的问题。编码计算还可以用于多个客户车辆的雾节点计算资源共享

编码计算实际上可用于多种计算资源和任务的匹配,其中一个特殊情况是使用最简单的重复编码的任务复制。这种情况下,每个任务被同时卸载到多个雾节点并独立处理,只要有一个雾节点在期限内完成任务,则任务成功执行。这其中重要的是平衡可靠性和资源占用,并且卸载需要在多个客户节点之间进行不平均的分配。在第二个案例研究中,我们为VeFN中的多个客户节点提供了最优的任务复制决策,并且提供了以优化延迟有目标的平衡任务分配的见解。第一个案例中还讨论了如何将MAB和编码运算结合起来以提供更好的性能。

案例研究

VeFN中基于学习的任务卸载

首先关注V2V卸载的分布式场景,考虑一个按顺序生成计算任务的客户车辆,他根据雾车对每个任务的平均计算时延进行卸载决策。对于客户车辆来说,可用计算资源的信息和信道状态信息是很难获得的,因此就不观察信道状态了,直接执行卸载动作并观察每个候选车辆的卸载延迟来进行学习,进而了解每个候选者的平均延迟。

如上所述,MAB算法可以用于设计计算负载算法,不过其仍需要时间对环境进行适应,为了保证MAB的高效性,我们重新设计了MAB的效用函数,考虑以下三个关键因素:

  • 卸载任务的经验延迟,即已经了解到的候选雾车的延迟性能
  • 每辆雾车出现的时间。客户车辆应该更多关注新出现的雾车,同时对已经了解的雾车进行合理利用
  • 每个任务的工作量。由于卸载延迟与工作量成正比,客户端车辆应该在工作量较低的时候,尽量尝试利用不同的雾车,从而减少学习带来的regret,反之亦然。

本文提出了一种基于自适应学习的任务卸载算法,此算法的复杂度与候选雾车成线性关系,其regret随着时间的推移呈次线性增长。

仿真中,从OSM下载了背景G6高速公路12公里路段的地图并通过模拟城市移动(SUMO)生成交通流。雾车具备异构计算鞥能力,CPU范围为[2,5]GHz。每个任务大小为[0.2,1]Mbits的均匀分布。

如图3a所示,本文提出的算法记作ALTO,其与三个baseline比较:UCB1是传统的MAB算法,Random Policy为随机选择雾车的随机算法;Optimal Policy为genie-aided的总是选择最小下载延迟的雾车的算法。因为雾车随时可以作为卸载候选出现或效是,因此平均延迟随时间波动。仿真结果表明,UCB1在车啊零移动和工作负载时变的状况下表现不佳,而本文所提算法在平均写在延迟方面表现良好。

为进一步提高QoS,将学习与任务复制和(3,2)MDS编码结合起来。需要注意的是此时全局状态信息未知,这是需要学习的/图3b展示以0.55s为时延上限,任务完成的比率和候选雾车数量的关系(K为重复的次数)。这个指标下的最优单卸载策略与3a中相同。结果表明,与单次卸载的ALTO算法相比,任务复制大大提高了服务可靠性,而K=2/3的轻度复制提供了最大的收益。在少量无车的情况下,MDS编码的完成率达到98%以上,甚至优于最优的单词写在策略。这是因为MDS编码减少了每个编码子任务的工作负载,可以进一步利用多个fog车辆的计算资源

利用车辆移动性的延迟约束任务复制

本节关注具有任务复制的车/人-RSU-车 的卸载模式,每个RSU从行人或车辆手机任务,然后将它们分配给其覆盖范围内的雾车。这些任务都具有绝对的硬延迟限制。每个RSU收集多个任务并形成一个任务队列,每个雾车同时职能分配一个任务,并且同一个个任务可以同时分配给多辆车并且各自独立执行,即任务复制。

我们的目标是通过决定任务和雾车的匹配关系来最小化任务的截止时间违反比率。假设雾车的到达服从泊松过程,每个人物在五车上的逗留时间服从齐次指数的指数分布。这让问题可与ii用有效水平的MDP来建模,我们由此得出的最优策略称为平衡任务分配(BETA)[8]。BETA的主要直觉是,当一辆新的雾车到达时,应该将卸载复制最小的任务排在前面,这种计算资源的平衡分配是最优的,避免了不必要的服务浪费。

本文进一步研究了移动性是如何影响计算性能的。在车辆交通理论中广泛应用的线性速度-密度关系下,使交通吞吐量(通过道路的车辆数量)最优的的车速为V_{max}/2。虽然在[8]中可以发现一个非线性的速度-密度关系,单线性模型也足以捕捉其本质。在VeFN系统中,最小化超时比率的最有车速为2v/3,即当车辆在v/2加速到2v/3的过程中,计算服务的可靠性提高了[8]。需要注意的是此结果是路上车的平均速度的提高。如图4所示,当车速增加时,超时比率先检校后增大。这主要是因为移动性为RSU与雾车相遇带来了更多的机会,然而随着车速的提高,车辆密度最终变得过低,无法满足任务要求。

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值