曲面积分核心公式

d σ → 0 时 d \sigma \to 0时 dσ0曲面的面积可以转化为如下的两个向量所形成的平行四边形面积:
向量从 ( 0 , 0 , 0 ) 到 ( d x , 0 , ∂ z ∂ x )向量从 ( d x , 0 , ∂ z ∂ x ) 到 ( d x , d y , ∂ z ∂ x + ∂ z ∂ y ) 此两个向量所夹的平面为: ∣ i j k d x 0 ∂ z ∂ x d x 0 d y ∂ z ∂ y d y ∣ 其面积为两个向量的点积,即: ∣ ∣ ∂ z ∂ x d x d y i + ∂ z ∂ y d x d y j + d x d y k ∣ ∣ = 1 + z x 2 + z y 2 d x d y 向量从(0,0,0)到(dx,0,\frac{\partial z}{\partial x}) 向量从(dx,0,\frac{\partial z}{\partial x})到(dx,dy,\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}) \\ 此两个向量所夹的平面为: \begin {vmatrix} i & j & k \\\\ dx & 0 & \frac{\partial z}{\partial x}dx \\\\ 0 & dy & \frac{\partial z}{\partial y} dy\end {vmatrix}\\ 其面积为两个向量的点积,即:\\ ||\frac{\partial z}{\partial x} dx dy i+ \frac{\partial z}{\partial y} dx dy j + dxdy k | |=\\ \sqrt{1 + z_x^2 + z_y^2}dxdy 向量从(0,0,0)(dx,0,xz)向量从(dx,0,xz)(dx,dy,xz+yz此两个向量所夹的平面为: idx0j0dykxzdxyzdy 其面积为两个向量的点积,即:∣∣xzdxdyi+yzdxdyj+dxdyk∣∣=1+zx2+zy2 dxdy
曲面积分中,都是利用此平面的极限来近似曲面的微分。

问题:

  1. 对角线的三个夹角的分别为
    α , β , γ , 他们的余弦值怎么计算? \alpha,\beta,\gamma,他们的余弦值怎么计算? α,β,γ,他们的余弦值怎么计算?
  2. xyz三个向量组成的三个平面分别是:dxdy,dydz,dydz,他们之间面积比值是多少?

方向余弦的推导和相互关系

三元函数中,xyz向量的三个方向余弦以及他们的关系,贯穿曲线和曲面积分(第一类曲线积分、第二类曲线积分,第一类曲面积分、第二类曲面积分)的整过过程。

理解这三个变量的计算,是理解曲线积分、曲面积分、高斯公式、斯托克斯公式的前提。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值