§9 在一般条件下重积分变量变换公式的证明
我们在本章 § 4 § 4 §4 中证明了重积分变量变换公式 (定理 21.13). 在证明中引用了
§ 4 § 4 §4中的引理. 此引理需要较强条件: x ( u , v ) , y ( u , v ) x(u, v), y(u, v) x(u,v),y(u,v) 有二阶连续偏导数.
本节将在 x ( u , v ) x(u, v) x(u,v), y ( u , v ) y(u, v) y(u,v) 仅有一阶连续偏导数的条件下来证明 § 4 § 4 §4
中的引理, 这样我们就完成了在一般条件下二重积分的变量变换公式.
为此,我们把这个引理重新叙述如下.
引理 设变换 T : x = x ( u , v ) , y = y ( u , v ) T: x=x(u, v), y=y(u, v) T:x=x(u,v),y=y(u,v) 把 u v u v uv
平面上的由分段光滑封闭曲线所围的闭区域 Δ \Delta Δ 一对一地映成 x y x y xy
平面上的闭区域 D D D, 函数 x = x ( u , v ) , y = y ( u , v ) x=x(u, v), y=y(u, v) x=x(u,v),y=y(u,v) 在 Δ \Delta Δ
上分别具有一阶连续偏导数且它们的函数行列式
J ( u , v ) = ∂ ( x , y ) ∂ ( u , v ) ≠ 0 , ( u , v ) ∈ Δ , J(u, v)=\frac{\partial(x, y)}{\partial(u, v)} \neq 0,(u, v) \in \Delta, J(u,v)=∂(u,v)∂(x,y)=0,(u,v)∈Δ,
则区域 D D D 的面积
μ ( D ) = ∬ Δ ∣ J ( u , v ) ∣ d u d v . \mu(D)=\iint_{\Delta}|J(u, v)| \mathrm{d} u \mathrm{~d} v . μ(D)=∬Δ∣J(u,v)∣du dv.
证 证明分以下 4 步:
第 1 步: 对任意 ( u 0 , v 0 ) ∈ \left(u_{0}, v_{0}\right) \in (u0,v0)∈ int Δ \Delta Δ,任意
ε > 0 \varepsilon>0 ε>0, 存在 ( u 0 , v 0 ) \left(u_{0}, v_{0}\right) (u0,v0) 的邻域 G G G, 当正方形
I ⊂ G I \subset G I⊂G 且 ( u 0 , v 0 ) ∈ I \left(u_{0}, v_{0}\right) \in I (u0,v0)∈I 时,
μ ( T ( I ) ) ⩽ ∬ I ∣ J ( u , v ) ∣ d u d v + ε μ ( I ) . \mu(T(I)) \leqslant \iint_{I}|J(u, v)| \mathrm{d} u \mathrm{~d} v+\varepsilon \mu(I) . μ(T(I))⩽∬I∣J(u,v)∣du dv+εμ(I).
第 2 步: 对任意正方形
I ⊂ int Δ , μ ( T ( I ) ) ⩽ ∬ I ∣ J ( u , v ) ∣ d u d v I \subset \operatorname{int} \Delta, \mu(T(I)) \leqslant \iint_{I}|J(u, v)| \mathrm{d} u \mathrm{~d} v I⊂intΔ,μ(T(I))⩽∬I∣J(u,v)∣du dv.
第 3 步:
μ ( D ) ⩽ ∬ Δ ∣ J ( u , v ) ∣ d u d v \mu(D) \leqslant \iint_{\Delta}|J(u, v)| \mathrm{d} u \mathrm{~d} v μ(D)⩽∬Δ∣J(u,v)∣du dv.
第 4 步: μ ( D ) = ∬ Δ ∣ J ( u , v ) ∣ d u d v \mu(D)=\iint_{\Delta}|J(u, v)| \mathrm{d} u \mathrm{~d} v μ(D)=∬Δ∣J(u,v)∣du dv.
第 1 步的证明 设 ( u 0 , v 0 ) ∈ \left(u_{0}, v_{0}\right) \in (u0,v0)∈ int Δ \Delta Δ, 对任意
ε > 0 \varepsilon>0 ε>0, 取正数 η < ∣ J ( u 0 , v 0 ) ∣ \eta<\left|J\left(u_{0}, v_{0}\right)\right| η<∣J(u0,v0)∣
满足
( 1 + η ) 2 ∣ J ( u 0 , v 0 ) ∣ < ∣ J ( u 0 , v 0 ) ∣ − η + ε . (1+\eta)^{2}\left|J\left(u_{0}, v_{0}\right)\right|<\left|J\left(u_{0}, v_{0}\right)\right|-\eta+\varepsilon . (1+η)2∣J(u0,v0)∣<∣J(u0,v0)∣−η+ε.
由于 ∣ J ( u , v ) ∣ |J(u, v)| ∣J(u,v)∣ 在点 ( u 0 , v 0 ) \left(u_{0}, v_{0}\right) (u0,v0) 上连续, 因此存在
( u 0 , v 0 ) \left(u_{0}, v_{0}\right) (u0,v0) 的邻域
G 1 ⊂ int Δ G_{1} \subset \operatorname{int} \Delta G1⊂intΔ, 使得当 ( u , v ) (u, v) (u,v) ∈ G 1 \in G_{1} ∈G1
时,
∣ J ( u , v ) ∣ > ∣ J ( u 0 , v 0 ) ∣ − η . |J(u, v)|>\left|J\left(u_{0}, v_{0}\right)\right|-\eta . ∣J(u,v)∣>∣J(u0,v0)∣−η.
定义映射
L : { x ^ ( u , v ) = x ( u 0 , v 0 ) + x u ( x 0 , v 0 ) ( u − u 0 ) + x v ( u 0 , v 0 ) ( v − v 0 ) , y ^ ( u , v ) = y ( u 0 , v 0 ) + y u ( u 0 , v 0 ) ( u − u 0 ) + y v ( u 0 , v 0 ) ( v − v 0 ) , L:\left\{\begin{array}{l} \hat{x}(u, v)=x\left(u_{0}, v_{0}\right)+x_{u}\left(x_{0}, v_{0}\right)\left(u-u_{0}\right)+x_{v}\left(u_{0}, v_{0}\right)\left(v-v_{0}\right), \\ \hat{y}(u, v)=y\left(u_{0}, v_{0}\right)+y_{u}\left(u_{0}, v_{0}\right)\left(u-u_{0}\right)+y_{v}\left(u_{0}, v_{0}\right)\left(v-v_{0}\right), \end{array}\right. L:{
x^(u,v)=x(u0,v0)+xu(x0,v0)(u−u0)+xv(u0,v0)(v−v0),y^(u,v)=y(u0,v0)+yu(u0,v0)(u−u0)+yv(u0,v0)(v−v0),
即
L ( u , v ) = ( x ^ ( u , v ) y ^ ( u , v ) ) = ( x ( u 0 , v 0 ) y ( u 0 , v 0 ) ) + J r ( u 0 , v 0 ) ( u − u 0 v − v 0 ) , L(u, v)=\left(\begin{array}{l} \hat{x}(u, v) \\ \hat{y}(u, v) \end{array}\right)=\left(\begin{array}{l} x\left(u_{0}, v_{0}\right) \\ y\left(u_{0}, v_{0}\right) \end{array}\right)+\boldsymbol{J}_{r}\left(u_{0}, v_{0}\right)\left(\begin{array}{l} u-u_{0} \\ v-v_{0} \end{array}\right), L(u,v)=(x^(u,v)y^(u,v))=(x(u0,v0)y(u0,v0))+Jr(u0,v0)(u−u0v−v0),
其中
J T ( u 0 , v 0 ) = ( x u ( u 0 , v 0 ) x ∗ ( u 0 , v 0 ) y u ( u 0 , v 0 ) y v ( u 0 , v 0 ) ) \boldsymbol{J}_{T}\left(u_{0}, v_{0}\right)=\left(\begin{array}{ll}x_{u}\left(u_{0}, v_{0}\right) & x_{*}\left(u_{0}, v_{0}\right) \\ y_{u}\left(u_{0}, v_{0}\right) & y_{v}\left(u_{0}, v_{0}\right)\end{array}\right) JT(u0,v0)=(xu(u0,v0)yu(u0,v0)x∗(u0,v0)yv(u0,v0)).
由于 x ( u , v ) , y ( u , v ) x(u, v), y(u, v) x(u,v),y(u,v) 在 ( u 0 , v 0 ) \left(u_{0}, v_{0}\right) (u0,v0) 处可微,因此
∣ x ( u , v ) − x ^ ( u , v ) ∣ = ∣ x ( u , v ) − x ( u 0 , v 0 ) − x u ( u 0 , v 0 ) ( u − u 0 ) − x v ( u 0 , v 0 ) ( v − v 0 ) ∣ = o ( ρ ) ( ρ → 0 ) , ∣ y ( u , v ) − y ^ ( u , v ) ∣ = ∣ y ( u , v ) − y ( u 0 , v 0 ) − y u ( u 0 , v 0 ) ( u − u 0 ) − y v ( u 0 , v 0 ) ( v − v 0 ) ∣ = o ( ρ ) ( ρ → 0 ) , \begin{aligned} & |x(u, v)-\hat{x}(u, v)| \\ = & \left|x(u, v)-x\left(u_{0}, v_{0}\right)-x_{u}\left(u_{0}, v_{0}\right)\left(u-u_{0}\right)-x_{v}\left(u_{0}, v_{0}\right)\left(v-v_{0}\right)\right| \\ = & o(\rho)(\rho \rightarrow 0), \\ & |y(u, v)-\hat{y}(u, v)| \\ = & \left|y(u, v)-y\left(u_{0}, v_{0}\right)-y_{u}\left(u_{0}, v_{0}\right)\left(u-u_{0}\right)-y_{v}\left(u_{0}, v_{0}\right)\left(v-v_{0}\right)\right| \\ = & o(\rho)(\rho \rightarrow 0), \end{aligned} ====∣x(u,v)−x^(u,v)∣∣x(u,v)−x(u0,v0)−xu(u0,v0)(u−u0)−xv(u0,v0)(v−v0)∣o(ρ)(ρ→0),∣y(u,v)−y^(u,v)∣∣y(u,v)−y(u0,v0)−yu(u0,v0)(u−u0)−yv(u0,v0)(v−v0)∣o(ρ)(ρ→0),
其中
ρ = ( u − u 0 ) 2 + ( v − v 0 ) 2 . \rho=\sqrt{\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2}} . ρ=(u−u0)2+(v−v0)2