智谱开源 9B/32B 系列模型,性价比超 DeepSeek-R1,Z.ai 平台上线

在这里插入图片描述

智谱将开源 32B/9B 系列 GLM 模型,涵盖基座、推理、沉思模型,均遵循 MIT 许可协议。该系列模型现已通过全新平台 Z.ai 免费开放体验,并已同步上线智谱 MaaS 平台。

其中,推理模型 GLM-Z1-32B-0414 性能媲美 DeepSeek-R1 等顶尖模型,实测推理速度可达 200 Tokens/秒(MaaS 平台 bigmodel.cn),目前国内商业模型中速度最快。此外,其价格仅为 DeepSeek-R1 的 1/30。

智谱启用全新域名 Z.ai,目前该平台整合了 32B 基座、推理、沉思三类 GLM 模型,后续将作为智谱最新模型的交互体验入口。

模型开源

本次开源的所有模型均采用宽松的 MIT 许可协议。这意味着可以免费用于商业用途、自由分发,为开发者提供了极大的使用和开发自由度。我们开源了 9B 和 32B 两种尺寸的模型,包括基座模型、推理模型和沉思模型,具体信息如下:

Image

基座模型 GLM-4-32B-0414 拥有 320 亿参数,其性能可与国内、外参数量更大的主流模型相媲美。该模型利用 15T 高质量数据进行预训练,特别纳入了丰富的推理类合成数据,为后续的强化学习扩展奠定了基础。在后训练阶段,除了进行面向对话场景的人类偏好对齐,我们还通过拒绝采样和强化学习等技术,重点增强了模型在指令遵循、工程代码生成、函数调用等任务上的表现,以强化智能体任务所需的原子能力。

GLM-4-32B-0414 在工程代码、Artifacts 生成、函数调用、搜索问答及报告撰写等任务上均表现出色,部分 Benchmark 指标已接近甚至超越 GPT-4o、DeepSeek-V3-0324(671B)等更大模型的水平。
在这里插入图片描述

GLM-4-32B-0414 进一步提升了代码生成能力,可处理并生成结构更复杂的单文件代码。Z.ai 的对话模式内建了预览功能,支持对生成的 HTML 和 SVG 进行可视化查看,便于用户评估生成结果和进行迭代优化。

在这里插入图片描述

>>> 给我设计一个移动端机器学习平台的 UI,其中要包括训练任务,存储管理,和个人统计界面。个人统计界面要用图表展示用户过去一段时间的各类资源使用情况。使用 Tailwind CSS 来美化页面,把这 3 个手机界面平铺展示到一个 HTML 页面中

在这里插入图片描述

>>> 设计一个支持自定义函数绘制的绘图板,可以添加和删除自定义函数,并为函数指定颜色。

在这里插入图片描述

>>> 用 svg 展示一个 LLM 的训练流程

GLM-Z1-32B-0414 是一款具备深度思考能力的推理模型。该模型在 GLM-4-32B-0414 的基础上,采用了冷启动与扩展强化学习策略,并针对数学、代码、逻辑等关键任务进行了深度优化训练。与基础模型相比,GLM-Z1-32B-0414 的数理能力和复杂问题解决能力得到显著增强。此外,训练中整合了基于对战排序反馈的通用强化学习技术,有效提升了模型的通用能力。

在部分任务上,GLM-Z1-32B-0414 凭借 32B 参数,其性能已能与拥有 671B 参数的 DeepSeek-R1 相媲美。通过在 AIME 24/25、LiveCodeBench、GPQA 等基准测试中的评估,GLM-Z1-32B-0414 展现了较强的数理推理能力,能够支持解决更广泛复杂任务。

在这里插入图片描述

GLM-Z1-9B-0414 是一个惊喜。我们沿用了上述一系列技术,训练了一个 9B 的小尺寸模型。虽然参数量更少,GLM-Z1-9B-0414 在数学推理及通用任务上依然表现出色,整体性能已跻身同尺寸开源模型的领先水平。特别是在资源受限的场景下,该模型可以很好地在效率与效果之间取得平衡,为需要轻量化部署的用户提供强有力的选择。

在这里插入图片描述

沉思模型GLM-Z1-Rumination-32B-0414 代表了智谱对 AGI 未来形态的下一步探索。

与一般推理模型不同,沉思模型通过更多步骤的深度思考来解决高度开放与复杂的问题。其关键创新在于,它能在深度思考过程中整合搜索工具处理复杂任务,并运用多种规则型奖励机制来指导和扩展端到端的强化学习训练。该模型支持“自主提出问题—搜索信息—构建分析—完成任务”的完整研究闭环,从而在研究型写作和复杂检索任务上的能力得到了显著提升。

200 Tokens/秒

除模型开源外,基座、推理两类模型也已同步上线智谱MaaS开放平台(bigmodel.cn),面向企业与开发者提供API服务。

本次上线的基座模型提供两个版本:GLM-4-Air-250414 和 GLM-4-Flash-250414,其中后者 完全免费。

在这里插入图片描述

上线的推理模型分为三个版本,分别满足不同场景需求:

  • GLM-Z1-AirX(极速版):定位国内最快推理模型,推理速度可达 200 tokens/秒,比常规快 8 倍;
  • GLM-Z1-Air(高性价比版):价格仅为 DeepSeek-R1 的 1/30,适合高频调用场景;
  • GLM-Z1-Flash(免费版):支持 免费使用,旨在进一步降低模型使用门槛。

对应模型价格表:

在这里插入图片描述

Z.ai 上线

全新站点 Z.ai ,作为智谱最新模型交互体验入口,将正式启用!

Z.ai 目前已上线三款开源模型:

  • GLM-4-32B(基座模型):具备强大代码生成能力,支持全新 Artifacts 功能,打造交互式开发体验。
  • Z1-32B(推理模型):超强推理性能,在线体验最高达 200 Tokens/秒 的极速输出。
  • Z1-Rumination-32B(沉思模型):可以体验 Deep Research 的强大能力,适合做深度调研。

在这里插入图片描述

<think>好的,我现在需要帮助用户了解如何下载deepseek-ai/DeepSeek-R1-Distill-Qwen-32B这个模型。首先,我应该回忆一下常见的模型下载途径,比如Hugging Face或者GitHub。用户可能对这方面不太熟悉,所以需要详细说明步骤。 首先,我应该检查这个模型是否在Hugging Face的模型库中。通常,很多开源模型都会托管在那里。用户提到的模型名称是deepseek-ai/DeepSeek-R1-Distill-Qwen-32B,这可能意味着发布者是deepseek-ai模型名称是后面的部分。我需要确认这个模型是否公开可用,或者是否需要申请访问权限。有些模型可能需要填写表格或者同意某些协议才能下载。 接下来,如果模型在Hugging Face上,用户需要安装transformers库和accelerate,可能还需要登录。我应该分步骤说明安装命令和登录过程。另外,使用git-lfs也是必须的,特别是对于大模型文件,所以需要提醒用户安装git-lfs,并初始化它。 如果模型不在Hugging Face上,可能需要去官方网站查找,比如DeepSeek的官网。用户可能需要注册账号,填写申请表格,等待批准后才能获得下载链接。这时候要提醒用户注意查看邮箱,包括垃圾邮件箱,以免错过回复。 另外,模型可能托管在GitHub上,所以需要检查GitHub仓库是否存在,并指导用户如何克隆仓库或者下载文件。如果模型较大,可能还需要注意存储空间和网络稳定性。 还需要考虑模型的使用许可,用户可能需要遵守特定的协议,比如学术研究或非商业用途,这一点需要提醒用户注意,避免侵权。 如果用户遇到下载问题,比如网络连接慢、存储不足,或者权限问题,应该给出一些常见解决办法,比如使用代理、分块下载或者联系支持团队。 总结下来,回答的结构应该是先确认模型来源,然后分情况说明Hugging Face、官网、GitHub的下载步骤,接着提醒许可问题,最后给出常见问题解决方法。确保语言简洁明了,步骤清晰,适合不同技术水平的用户理解。</think>要下载 `deepseek-ai/DeepSeek-R1-Distill-Qwen-32B` 模型,请按照以下步骤操作: --- ### **1. 确认模型来源** - **Hugging Face Hub**:大多数开源模型托管在此平台,建议先访问 [Hugging Face 模型页面](https://huggingface.co/deepseek-ai) 搜索该模型- 直接链接(若存在)可能为: `https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B` - **注意**:部分模型可能需要申请访问权限(需注册账号并填写申请表格)。 - **官方渠道**:访问 DeepSeek 官方网站(如 [www.deepseek.com](https://www.deepseek.com)),查找模型下载入口或联系支持团队获取指引。 --- ### **2. 通过 Hugging Face 下载(若可用)** #### **步骤 1:安装依赖** ```bash pip install transformers accelerate # Hugging Face 库 pip install git-lfs # 大文件下载工具 git lfs install # 初始化 Git LFS ``` #### **步骤 2:登录 Hugging Face** ```bash huggingface-cli login # 输入账号的 Access Token(在个人设置中生成) ``` #### **步骤 3:下载模型** ```python from transformers import AutoModel, AutoTokenizer model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModel.from_pretrained(model_name) # 模型会自动下载到本地缓存(通常位于 ~/.cache/huggingface/hub) ``` --- ### **3. 通过官方网站申请(如需权限)** 1. **注册账号**:在 DeepSeek 官网或 Hugging Face 注册。 2. **填写申请表**:提供用途(研究/商业)、机构信息等。 3. **等待审核**:通过后获取下载链接或访问权限。 4. **下载模型**:根据提供的指引(如 `git clone` 或直接下载链接)。 --- ### **4. 检查 GitHub 仓库** - 搜索 `DeepSeek-R1-Distill-Qwen-32B` 的 GitHub 仓库(若有): ```bash git clone https://github.com/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B.git ``` --- ### **注意事项** 1. **硬件要求**:32B 参数模型需要 **至少 64GB 内存** 和 **高性能 GPU**(如 A100)。 2. **许可协议**:遵守模型的许可证(如仅限于研究/非商业用途)。 3. **网络问题**:国内用户可能需要代理加速下载。 --- ### **常见问题** - **权限被拒**:确认是否完成申请流程,或联系 `support@deepseek.com`。 - **下载中断**:尝试使用 `resume_download=True` 参数或手动 `git clone`。 - **存储不足**:确保磁盘空间足够(模型可能占用 50GB+)。 如果遇到具体问题,可提供更多细节,我会进一步协助!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值