神经网络代码总是停在to(device)很久之后才能继续运行(解决)

博客讲述了神经网络代码运行时,使用CPU速度慢,设置CUDA后在to(device)处卡顿的问题。作者通过检查CUDA版本,安装CUDA11.1,检查环境变量,在pytorch官网找到对应版本安装方式,还调整python版本为3.9,最终解决了运行慢及环境配置问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

如图所示,每次用cpu就能跑,但跑非常慢,然后就会把cuda设置为True,这样就在gpu上面跑了,但每次跑到 to(device) 的时候就会卡很久很久,总之还是很慢很慢,所以在朋友的帮助下解决了这个问题。

CUDA版本检查,我的显卡是3060,据说GeForce RTX 30系列显卡仅支持CUDA 11.1及以上版本,于是去安装了CUDA11.1。

检查下环境变量,没毛病:

然后再在终端执行:nvcc -V 检查下,没毛病:

接着,在pytorch官网找到cuda11.1对应的pytorch版本的安装方式:

执行:

conda install pytorch torchvision torchaudio cudatoolkit=11.1 -c pytorch -c conda-forge

后来又遇到了好多问题,这里不细节讲了吧,直接把我一些做法说出来:

cuda11.1 + python3.9 + 最新的torch,tensorflow,tensorbord等等(python3.7 和 cuda11.1貌似不匹配,老出错,直接改成python3.9,然后就成了)

另外还有一些细节的关于代码的错误,我发在其他博客里面了,不同的代码可能会遇到不同的错误,就不放在这里讲了

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我有明珠一颗

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值