l = parse_upsample(options, params, net)

29 篇文章 1 订阅
27 篇文章 2 订阅

l = parse_upsample(options, params, net);

layer parse_upsample(list *options, size_params params, network *net)
{

    int stride = option_find_int(options, "stride",2);
    layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride);
    l.scale = option_find_float_quiet(options, "scale", 1);
    return l;
}

layer l = make_upsample_layer(params.batch, params.w, params.h, params.c, stride);

layer make_upsample_layer(int batch, int w, int h, int c, int stride)
{
    layer l = {0};
    l.type = UPSAMPLE;
    l.batch = batch;
    l.w = w;
    l.h = h;
    l.c = c;
    l.out_w = w*stride;
    l.out_h = h*stride;
    l.out_c = c;
    if(stride < 0){
        stride = -stride;
        l.reverse=1;
        l.out_w = w/stride;
        l.out_h = h/stride;
    }
    l.stride = stride;
    l.outputs = l.out_w*l.out_h*l.out_c;
    l.inputs = l.w*l.h*l.c;
    l.delta =  calloc(l.outputs*batch, sizeof(float));
    l.output = calloc(l.outputs*batch, sizeof(float));;

    l.forward = forward_upsample_layer;
    l.backward = backward_upsample_layer;
    #ifdef GPU
    l.forward_gpu = forward_upsample_layer_gpu;
    l.backward_gpu = backward_upsample_layer_gpu;

    l.delta_gpu =  cuda_make_array(l.delta, l.outputs*batch);
    l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
    #endif
    if(l.reverse) fprintf(stderr, "downsample         %2dx  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
    else fprintf(stderr, "upsample           %2dx  %4d x%4d x%4d   ->  %4d x%4d x%4d\n", stride, w, h, c, l.out_w, l.out_h, l.out_c);
    return l;
}

l.forward = forward_upsample_layer;
l.backward = backward_upsample_layer;

void forward_upsample_layer(const layer l, network net)
{
	//使用0填充输出,即将此层输出值初始化为0
    fill_cpu(l.outputs*l.batch, 0, l.output, 1);
    if(l.reverse){
        upsample_cpu(l.output, l.out_w, l.out_h, l.c, l.batch, l.stride, 0, l.scale, net.input);
    }else{
        upsample_cpu(net.input, l.w, l.h, l.c, l.batch, l.stride, 1, l.scale, l.output);
    }
}

void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out)
{
    int i, j, k, b;
    for(b = 0; b < batch; ++b){
        for(k = 0; k < c; ++k){
            for(j = 0; j < h*stride; ++j){
                for(i = 0; i < w*stride; ++i){
                    int in_index = b*w*h*c + k*w*h + (j/stride)*w + i/stride;
                    int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i;
                    //前向传播时使用输入值赋给输出,其中每一个输入值赋给两个输出,故输出值相邻的两个相等
                    if(forward) out[out_index] = scale*in[in_index];
                    //反向传播时运行,因为需要一个大的batch才会更新权重,所以这里会将多个min_batch保存下来
                    else in[in_index] += scale*out[out_index];
                }
            }
        }
    }
}

void backward_upsample_layer(const layer l, network net)
{
    if(l.reverse){
        upsample_cpu(l.delta, l.out_w, l.out_h, l.c, l.batch, l.stride, 1, l.scale, net.delta);
    }else{
        upsample_cpu(net.delta, l.w, l.h, l.c, l.batch, l.stride, 0, l.scale, l.delta);
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值