【经典文献】双边滤波

ICCV 1998

1995年,Aurich和Weule提出一种非线性高斯滤波器,三年后,Tomasi和Manduchi将其用于图像平滑,并将其命名为双边滤波。

  • Aurich, V., & Weule, J. (1995). Non-linear Gaussian filters performing edge preserving diffusion. In Proceedings of the DAGM symposium
  • Tomasi, C., & Manduchi, R. (1998). Bilateral filtering for gray and color images. In Proceedings of the international conference on computer vision (pp. 839–846). New York: IEEE Press

基本思路

在1995年这篇ICCV的论文中,首先给出了传统的域滤波和范围滤波的变换形式

h d ( x ⃗ ) = k d − 1 ( x ⃗ ) ∬ f ( ξ ⃗ ) c ( ξ ⃗ , x ⃗ ) d ξ ⃗ h r ( x ⃗ ) = k r − 1 ( x ⃗ ) ∬ f ( ξ ⃗ ) s ( f ( ξ ⃗ ) , f ( x ⃗ ) ) d ξ ⃗ h_d(\vec x) = k_d^{-1}(\vec x)\iint_{} f(\vec \xi)c(\vec \xi, \vec x)\mathrm d\vec \xi\\ h_r(\vec x) = k_r^{-1}(\vec x)\iint f(\vec \xi)s(f(\vec \xi),f(\vec x))\mathrm d\vec \xi\\ hd(x )=kd1(x )f(ξ )c(ξ ,x )dξ hr(x )=kr1(x )f(ξ )s(f(ξ ),f(x ))dξ

其中 ξ ⃗ \vec \xi ξ x ⃗ \vec x x 邻域中的某个像素点, f f f为某像素点的强度, c ( ξ ⃗ , x ⃗ ) c(\vec \xi, \vec x) c(ξ ,x ) x x x ξ \xi ξ的空间临近度(geometric closeness); s ( f ( ξ ⃗ ) , f ( x ⃗ ) ) s(f(\vec \xi),f(\vec x)) s(f(ξ ),f(x ))为颜色相似度(photometric similarity)。 k d , k r k_d, k_r kd,kr为滤波过程中用于归一化的直流分量

k d ( x ⃗ ) = ∬ c ( ξ ⃗ , x ⃗ ) d ξ , k r ( x ⃗ ) = ∬ s ( ξ ⃗ , x ⃗ ) d ξ ⃗ k_d(\vec x) = \iint c(\vec \xi, \vec x)\mathrm d\xi,\quad k_r(\vec x) = \iint s(\vec \xi, \vec x)\mathrm d\vec \xi kd(x )=c(ξ ,x )dξ,kr(x )=s(ξ ,x )dξ

文中给出的二重积分的范围是 ± ∞ \pm\infty ±,但实际上可能仅仅局限在 x x x的邻域内,故而这里并未著明上下标。

将这两个滤波过程合并在一起,即可得到双边滤波的一个抽象形式

h ( x ⃗ ) = k − 1 ( x ⃗ ) ∬ f ( ξ ⃗ ) c ( ξ ⃗ , x ⃗ ) s ( f ( ξ ⃗ ) , f ( x ⃗ ) ) d ξ ⃗ k ( x ⃗ ) = ∬ c ( ξ ⃗ , x ⃗ ) s ( f ( ξ ⃗ ) , f ( x ⃗ ) ) \begin{aligned} h(\vec x) &= k^{-1}(\vec x) \iint f(\vec \xi) c(\vec \xi, \vec x) s(f(\vec \xi), f(\vec x))\mathrm d\vec \xi \\ k(\vec x) &= \iint c(\vec \xi, \vec x) s(f(\vec \xi), f(\vec x))\\ \end{aligned} h(x )k(x )=k1(x )f(ξ )c(ξ ,x )s(f(ξ ),f(x ))dξ =c(ξ ,x )s(f(ξ ),f(x ))

双边高斯滤波

在这个抽象形式中, c , s c, s c,s这两个函数都是待定义的,文中给出了高斯形式的双边滤波

c ( ξ ⃗ , x ⃗ ) = exp ⁡ [ − 1 2 d ( ξ ⃗ , x ⃗ ) σ d ] , d ( ξ ⃗ , x ⃗ ) = ∥ ξ ⃗ − x ⃗ ∥ s ( ξ ⃗ , x ⃗ ) = exp ⁡ [ − 1 2 δ ( f ( ξ ⃗ ) , f ( x ⃗ ) ) σ r ] , δ ( f 1 , f 2 ) = ∣ f 1 − f 2 ∣ c(\vec \xi, \vec x)=\exp\left[-\frac{1}{2}\frac{d(\vec \xi, \vec x)}{\sigma_d} \right], d(\vec \xi, \vec x)=\Vert \vec \xi-\vec x\Vert\\ s(\vec \xi, \vec x)=\exp\left[-\frac{1}{2}\frac{\delta(f(\vec \xi), f(\vec x))}{\sigma_r} \right], \delta(f_1, f_2)=\vert f_1-f_2\vert c(ξ ,x )=exp[21σdd(ξ ,x )],d(ξ ,x )=ξ x s(ξ ,x )=exp[21σrδ(f(ξ ),f(x ))],δ(f1,f2)=f1f2

σ d , σ r \sigma_d, \sigma_r σd,σr取值不同时,其处理效果如下

在这里插入图片描述

<think>嗯,用户想找关于双边滤波的学术论文下载。首先,我需要确认双边滤波的基本概念,可能用户已经了解一些,但可能需要更深入的信息。根据引用内容,双边滤波是一种非线性滤波器,保持边缘的同时去噪,常用于图像处理。接下来,用户需要学术论文,所以得推荐合适的资源和方法。 首先,我应该考虑常用的学术数据库,比如IEEE Xplore、Springer、ScienceDirect等。这些平台有大量的论文资源。然后,像Google Scholar这样的搜索引擎也是不错的选择,用户可以输入关键词查找相关论文。另外,GitHub上可能有开源项目或论文推荐,比如引用3提到的递归双边滤波库,或许相关项目会引用重要论文。 另外,用户提到引用4中的论文题目,可能是一个具体的例子,但用户可能需要更广泛的资源。需要注意引用格式是否正确,是否有具体的作者或会议信息,帮助用户更精准地查找。 还需要提醒用户注意版权问题,确保下载的论文是合法获取的,比如通过学校或机构的订阅,或者使用开放获取的资源。此外,推荐一些工具如Zotero或Mendeley来管理文献,可能会对用户有帮助。 可能用户是在进行研究或学术写作,需要最新的双边滤波技术进展,或者具体应用案例。因此,建议他们使用特定的关键词组合,比如“双边滤波 边缘保持 去噪”来提高搜索效率。另外,查看论文的参考文献部分也能找到更多相关资源。 最后,确保回答结构清晰,分点列出,并引用提供的资料,比如提到递归双边滤波库的项目,或者FLAT数据集相关的论文,这样可以增加可信度。同时,生成的相关问题要围绕用户可能进一步的需求,比如应用场景或优化方法,帮助用户深入探索。</think>### 双边滤波学术论文下载方法 双边滤波Bilateral Filter)是图像处理中用于边缘保持去噪的重要技术[^1][^2][^3]。以下是获取相关学术论文的途径和建议: #### 1. **学术数据库检索** - **IEEE Xplore**:搜索关键词 `"bilateral filter"` 或 `"edge-preserving smoothing"`,可找到经典论文(如原始算法提出者C. Tomasi和R. Manduchi文献)及最新优化方法。 - **Springer/ScienceDirect**:适合查找理论分析或应用案例论文,例如结合深度学习的改进方案[^4]。 #### 2. **开源平台与代码库** - **GitHub项目**:例如 *Recursive Bilateral Filter* 库(引用[3]),其文档或README文件常会引用核心论文,提供直接下载链接。 - **arXiv.org**:搜索预印本论文,例如输入 `bilateral filter CNN` 可找到结合深度学习的创新方法。 #### 3. **特定论文推荐** - **经典文献**: - *Bilateral Filtering for Gray and Color Images*(C. Tomasi, 1998) - *Fast Bilateral Filtering for the Display of High-Dynamic-Range Images*(Durand et al., 2002) - **最新进展**:如引用[4]提到的 *FLAT Dataset* 相关论文,探讨双边滤波在3D成像中的应用。 #### 4. **工具与技巧** - **Google Scholar**:使用高级搜索限定时间范围(如近5年)和关键词组合(如 `"bilateral filter" + "optimization"`)。 - **学术网络**:ResearchGate可请求作者分享论文副本。 #### 注意事项 - **版权问题**:优先选择开放获取(Open Access)论文或通过机构订阅权限下载。 - **引用管理工具**:使用Zotero或Mendeley整理文献并自动生成引用格式。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微小冷

请我喝杯咖啡

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值