Altium Designer原理图&PCB垃圾文件清理

平时使用用Altium Designer画原理图和PCB时,软件会生成一些预览文件,History历史文件以及Logs日志文件等。尤其是History历史文件,占用空间可谓巨大,在项目开发过程中,建议暂时不要删除History文件夹,这样可以根据保存时间尽快找回之前版本文件。

但是当定稿、投板之后,需要对文档打包存档或拷贝传阅时,就无需留存如此庞杂的历史文件了,占用空间不说,还影响传输效率。

我们可以写个简单批量处理.bat文件轻松搞定,具体方法如下:

1.新建一个txt文件;
2.在文件中写入如下代码;

del *.SchDocPreview /s
del *.schPreview /s
del *.PcbDocPreview /s 
del *.PrjPCBStructure /s 
del *.drc /s
del *.LOG /s 
del *.htm /s 
::del *.OutJob /s 
del Documents/*.SchDocPreview/s
del Documents/*.PcbDocPreview/s
for /r /d %%b in (__Previews) do rd "%%b" /s /q 
::删除当前目录下的所有__Previews文件夹
for /r /d %%b in (History) do rd "%%b" /s /q 
::删除当前目录下的所有History文件夹
for /r /d %%b in (Project?Logs?for*) do rd "%%b" /s /q 
::删除当前目录下的所有带字符串Project Logs for的文件夹
for /r /d %%b in (Project?Outputs?for*) do rd "%%b" /s /q   
::删除当前目录下的所有带字符串Project Outputs for的文件夹
exit
::说明:rd指令用于删除文件夹
::del指令用于删除文件
::可自行编辑来快捷批处理删除。

3.文件另存为.bat格式
在这里插入图片描述

4.将.bat文件放入工程文件夹下,双击运行即可。

看看效果:

清理之前:占用空间4.22GB,保存了大量过程文件。
清理前占用高达4.22GB空间
在这里插入图片描述
清理之后:只保留工程文件,占用空间只有23.8MB,清爽。
清理后只有22.8MB
只保留工程文件

较懒的话,可以直接点击下方链接直取。

AD原理图&PCB垃圾文件清理.zip|一键清理AD原理图&PCB垃圾文件清理

Semi-supervised classification with graph convolutional networks (GCNs) is a method for predicting labels for nodes in a graph. GCNs are a type of neural network that operates on graph-structured data, where each node in the graph represents an entity (such as a person, a product, or a webpage) and edges represent relationships between entities. The semi-supervised classification problem arises when we have a graph where only a small subset of nodes have labels, and we want to predict the labels of the remaining nodes. GCNs can be used to solve this problem by learning to propagate information through the graph, using the labeled nodes as anchors. The key idea behind GCNs is to use a graph convolution operation to aggregate information from a node's neighbors, and then use this aggregated information to update the node's representation. This operation is then repeated over multiple layers, allowing the network to capture increasingly complex relationships between nodes. To train a GCN for semi-supervised classification, we use a combination of labeled and unlabeled nodes as input, and optimize a loss function that encourages the network to correctly predict the labels of the labeled nodes while also encouraging the network to produce smooth predictions across the graph. Overall, semi-supervised classification with GCNs is a powerful and flexible method for predicting labels on graph-structured data, and has been successfully applied to a wide range of applications including social network analysis, drug discovery, and recommendation systems.
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值