引言
半导体晶圆制造是一个极其复杂且高度精密的过程,在晶圆制造过程中,由于各种因素的影响,如原材料质量、工艺控制、设备精度等,不可避免地会产生各种缺陷。这些缺陷如果不能及时检测和处理,将会严重影响芯片的性能和成品率,增加生产成本。因此,半导体晶圆缺陷检测技术在半导体制造行业中具有至关重要的地位。传统算法在半导体晶圆缺陷检测中曾经发挥了重要作用,并且在一些特定场景下仍然被广泛应用。了解基于传统算法的半导体晶圆缺陷检测原理和方法,对于深入理解半导体制造工艺和质量控制具有重要意义。

(接上篇)
-
- 缺乏自适应性和学习能力:传统算法通常是基于预设的规则和模型进行缺陷检测,缺乏对不同工艺条件、晶圆类型以及新出现缺陷模式的自适应性和学习能力。一旦半导体制造工艺发生变化,或者出现新的缺陷类型,就需要人工重新调整算法参数甚至重新设计算法,这大大增加了检测系统的维护成本和开发周期。例如,当引入新的光刻技术或新型材料时,传统算法可能无法及时适应这些变化,导致检测准确性下降。
- 受环境因素影响较大:光学检测中的明场、暗场检测以及激光检测等方法,对环境的光照条件、温度、湿度等因素较为敏感。微小的环境变化都可能导致检测结果出现波动,影响检测的准确性和稳定性。例如,光照强度的轻微变化可能改变晶圆表面反射光或散射光的强度,使得基于光
订阅专栏 解锁全文
929

被折叠的 条评论
为什么被折叠?



