自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(10)
  • 收藏
  • 关注

原创 InSAR图像处理信号基础4

从整数(无穷)个Ω,到真正意义上的无穷个,这里的F函数就是系数,即每个虚指函数所对应的系数,由此可以得到相位谱和幅度谱。对于三角函数形式的函数,即为nΩ与An和fai之间的关系,对于虚指数信号即为nΩ与Fn的振幅,相位之间的关系。基频其实就是相邻的两个频率之间的距离,第三个就是两个零点之间的距离除以基频,就是一个区间内有多少个点。**按照傅里叶变换的公式进行计算:**采用定义,广义傅里叶变换,分解,其中后两种主要针对绝对不可积。,由此可导出一个nΩ所对应的Fn的振幅和相位,此时对应双边谱。

2024-05-10 13:40:52 1106

原创 PCLandOpen3d(点云读写)

代表以ascill编码,即用记事本可以打开,还有binary编码,记事本打开会乱码。open3d保存文件默认以ascill格式保存。代表后面每行有三个数字x,y,z,有时后面会跟上一些其他数字,如强度,rgb数值,法线向量等。b.更改lib和include文件目录。一般用的比较多的是pcd。

2024-04-25 12:33:31 522 1

原创 点云处理过程

通过计算点云描述子,匹配不同点云的描述子,Spin Image特征描述子:在 PCL 源码中的 spin_image.hpp 文件实现了该特征描述子的计算过程,步骤为:确定当前查询点,并确定查询点的旋转轴和旋转半径,根据半径得到查询点附近的k近邻,对于点云配准,不是点越多越好,适当的减少一些多余的点,可以减少计算负担,还可以增加精度,目的是在减少点的同时,尽可能保留点云的特征。SUAN检测:采用圆形模板,对于不同的位置,圆形模板所包含的面积是不同的,以此来判断点的类型,给定阈值即可判断,对于三维?

2024-04-25 09:26:20 2926 1

原创 干涉图处理全流程

(single类型的矩阵),接下来就是在matlab中编写各种滤波处理函数,之后使用上面的colormap进行输出,注意不能直接使用imshow进行输出,因为imshow对于double和single类型的数据识别的范围为0-1。palsar_20100113_144305425_A_HH_slc.shp 包含地理坐标的shp文件(地理坐标系,可与dem对照)显示就不能使用[-pi,pi]的值,必须把它映射到颜色map中,即0-1的rgb,或者0-255的rgb。或者直接使用论文的经纬度。

2024-04-20 00:01:21 1446 3

原创 peaks+randn+atan2+unwrap+mod函数

theta = angle(z) 为复数数组 z 的每个元素返回区间 [-π,π] 中的相位角。对每一列的起始位置进行计算,再对每一行进行运算(itoh算法),这个算法即使没有添加噪声也无法恢复原相位,所以不好。,表达式为 b = a - m.*floor(a./m)。b = mod(a,m) 返回 a 除以 m 后的余数,其中 a 是被除数,m 是除数。,计算时,可以先不带符号,按正数对正数取余来得出答案后,根据被余数a的符号来确定符号。与angle(cos(x) + sin(x)*i)= x 相同。

2024-04-17 14:48:24 492

原创 图像分割(图像分类)

参考:<<数字图像处理——使用MATLAB分析与实现>> 清华大学出版社 蔡利梅主编。包括种子点选取,相似性准则,区域停止生长条件。包括三个步骤:边界检测,边界改良,边界追踪。b.1 OTSU(最大类间方差法)缺点:对于边缘恰好为最值未判断。b.基于模式分类思路的阈值选择。b.Hough变换(检测直线)a.基于灰度直方图阈值分割。a.基于梯度的边界闭合。6.基于聚类的图像分割。

2024-04-09 14:36:12 416

原创 图像锐化(边缘检测)

对于imfilter函数,默认相关运算,即模板与函数对应相称,原数组补0,对于奇模板,直接补零即可,对于偶模板,如果指定偶数大小的核 h,则核的中心是 floor((size(h) + 1)/2)。6.频率域高通域滤波(将上一个文章的取值取反),因为边缘对应高频成分。a.梯度算子(梯度计算原理–>导数计算原理)细线型边缘,突变型边缘,渐变型边缘。3.一阶微分算子(针对突变型边缘)b.Robert算子(相邻点相减)1.什么是图像锐化(边缘检测)?c.Sobel算子(左右点相减)4.二阶微分算子(细线型边缘)

2024-04-07 16:46:49 915

原创 图像平滑(滤波)学习笔记

加性噪声一般指热噪声、散弹噪声等,它们与信号的关系是相加,不管有没有信号,噪声都存在。而乘性噪声一般由信道不理想引起,它们与信号的关系是相乘,信号在它在,信号不在他也就不在。参考:<<数字图像处理——使用MATLAB分析与实现>> 清华大学出版社 蔡利梅主编。频率域滤波:利用正交变换(如小波变换,傅里叶变换),利用噪声点对应高频信息进行滤波。空间域滤波:利用模板运算,在原图像上进行处理。b.高斯滤波:即相邻像元取加权均值。a.均值滤波:即相邻像元取均值。c.中值滤波:即相邻像元取中值。

2024-04-06 20:21:27 579 1

转载 吴恩达深度学习L1W4

反向传播所需要的数据是上一层的dA,这一层cache存储的数据,注意:cache保存的是上一层的A,以及这一层的W,b。正向传播时,cache保存的是上一层的A,以及这一层的W,b,与此相对应的反向传播时grad保存的是上一层的dA。每一层的b:(本层节点数,1) 这里运用python广播,1实际为m。正向传播所需要的数据是上一层的A,以及这一层的W,b。每一层的W:(本层节点数,上一层节点数)每一层的Z:(本层节点数,m)每一层的A:(本层节点数,m)每一层的dw和db与W,b相同。

2024-04-03 18:15:07 78 1

转载 吴恩达深度学习W1L3(笔记)

参考:https://www.heywhale.com/mw/project/5dd3946900b0b900365f3a48。

2024-04-01 19:56:16 70

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除