考研线性代数常见概念、问题总结

持续更新中~

1.一个矩阵有很多特征值和特征向量,任意一个特征值λ和对应的特征向量,都满足Aα=λα!而不是之前傻乎乎的把所有λ和α组合起来,因为那样做是在正交变换。不要混淆了!
2.零向量不能说特征向量,看定义!α是非零列向量。此外,零向量对任何等式都成立,也没有意义了。
3.对角阵的特征向量是n重的,且特征向量是任意n阶非零列向量。
4.若存在矩阵C使得矩阵A合同于对角阵,则A必为对称矩阵。合同等式两边转置,对角阵转置等于本身即可证。
5.实对称矩阵,必相似对角阵,也合同于对角阵。
6.如果矩阵可以相似对角化,那么矩阵的秩=非零特征值的个数。
证明:存在可逆矩阵P满足 P^-1AP = 对角矩阵。
r(A) = r(P^-1AP) = r(对角矩阵) = 非零特征值的个数。
7.矩阵等价的充要条件:同型矩阵且秩相等
8.可逆矩阵一定是方阵,否则最后怎么可能化成E?
9.对于r(AB),如果A和B都是满秩n阶方阵,那么r(AB)也是n。
如果A是列满秩(对B做行变换),那么结果=r(B)。同理,如果B是行满秩,结果=R(A)。
10.一个矩阵,特征值唯一,特征向量不唯一。特征值唯一很好理解,因为特征多项式方程唯一,其解唯一。特征向量不唯一是因为同一个特征值λ的特征向量的非0线性组合仍然是λ的特征向量。平时解题找的都是基础解系,易错理解为特征向量唯一。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值