pycharm环境构建+MLP、GCN简单demo复现

前提:pycharm+anaconda已经安装,并且配置好了。

在Anaconda Powershell Prompt中的一些操作:
1.查看系统中已有的虚拟环境:conda env list

2.新建一个虚拟环境:conda create -n name(但是他是建在C盘的,不可取)

3.删除错误的环境:conda env remove -n name

4.那么我们如何正确新建一个我们需要的环境呢? conda create -p 绝对地址

5.激活进入虚拟环境:conda activate 绝对地址

6.pypi官网:pypi.org pip所需要的包  例如:pip install torch

7.清华大学开源软件镜像站:清华大学开源软件镜像站 | Tsinghua Open Source Mirror

        pip 临时使用:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple some-package

        pip默认使用(推荐):

python -m pip install --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

由于我们已经新建虚拟环境了,那么只需要打开pycharm。

File->Setting->Project->Python Interpreter->Add Interpreter->Add Local Interpreter->Conda Environment->

Codna Executable:    D:\Anaconda\Scripts\conda.exe

Using existing environment

Using existing environment:选择新建虚拟环境所在绝对路径

一个MLP代码:

from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import torch
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import GCNConv

dataset = Planetoid(root='/tmp/Planetoid', name='Cora', transform=NormalizeFeatures()) # transform预处理

data = dataset[0]
print(data)

def visualize(h, color):
    z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())
    plt.figure(figsize=(10,10))
    plt.xticks([])
    plt.yticks([])
    plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
    plt.show()

class MLP(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        torch.manual_seed(12345)
        self.lin1 = Linear(dataset.num_features, hidden_channels)
        self.lin2 = Linear(hidden_channels, dataset.num_classes)

    def forward(self, x):
        x = self.lin1(x)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.lin2(x)
        return x


model = MLP(hidden_channels=16)
print(model)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)

def train():
    model.train()
    optimizer.zero_grad()
    out = model(data.x)
    loss = criterion(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss

def test():
    model.eval()
    out = model(data.x)
    pred = out.argmax(dim=1)
    test_correct = pred[data.test_mask] == data.y[data.test_mask]
    test_acc = int(test_correct.sum()) / int(data.test_mask.sum())
    return test_acc

for epoch in range(1, 201):
    loss = train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')

运行结果:

Test Accuracy: 0.5900

若我们换成GCN,效果是否会有优化?

GCN代码:

from torch_geometric.datasets import Planetoid
from torch_geometric.transforms import NormalizeFeatures
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
import torch
from torch.nn import Linear
import torch.nn.functional as F
from torch_geometric.nn import GCNConv

dataset = Planetoid(root='/tmp/Planetoid', name='Cora', transform=NormalizeFeatures()) # transform预处理

data = dataset[0]
print(data)

def visualize(h, color):
    z = TSNE(n_components=2).fit_transform(h.detach().cpu().numpy())
    plt.figure(figsize=(10,10))
    plt.xticks([])
    plt.yticks([])
    plt.scatter(z[:, 0], z[:, 1], s=70, c=color, cmap="Set2")
    plt.show()

class GCN(torch.nn.Module):
    def __init__(self, hidden_channels):
        super().__init__()
        torch.manual_seed(1234567)
        self.conv1 = GCNConv(dataset.num_features, hidden_channels)  # (1433,16)
        self.conv2 = GCNConv(hidden_channels, dataset.num_classes)  # (16,7)

    def forward(self, x, edge_index):
        x = self.conv1(x, edge_index)
        x = x.relu()
        x = F.dropout(x, p=0.5, training=self.training)
        x = self.conv2(x, edge_index)
        return x

model = GCN(hidden_channels=16)
optimizer = torch.optim.Adam(model.parameters(), lr=0.01, weight_decay=5e-4)
criterion = torch.nn.CrossEntropyLoss()
print(model)
# model.eval()
# out = model(data.x, data.edge_index)
# visualize(out, color=data.y)  # 没训练之前

def train():
    model.train()
    optimizer.zero_grad()
    out = model(data.x, data.edge_index)
    loss = criterion(out[data.train_mask], data.y[data.train_mask])
    loss.backward()
    optimizer.step()
    return loss

def test():
    model.eval()
    out = model(data.x, data.edge_index)
    pred = out.argmax(dim=1)
    test_correct = pred[data.test_mask] == data.y[data.test_mask]
    test_acc = int(test_correct.sum()) / int(data.test_mask.sum())
    return test_acc

for epoch in range(1, 201):
    loss = train()
    print(f'Epoch: {epoch:03d}, Loss: {loss:.4f}')

test_acc = test()
print(f'Test Accuracy: {test_acc:.4f}')
model.eval()
out = model(data.x, data.edge_index)
visualize(out, color=data.y)  # 训练之后

运行结果对比:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值