Federated Optimization in Heterogeneous Networks —— Fedprox算法

Federated Optimization in Heterogeneous Networks

1. 论文信息

  • 论文题目: Federated Optimization in Heterogeneous Networks
    Fedprox算法,plato小项目跑通并理解
  • 作者:Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, Virginia Smith
  • 发表:Proceedings of Machine learning and systems, 2020

2. introduction

  • 背景:联邦学习下,统计异构性和系统异构性问题亟待解决
  • 挑战:高度的系统和统计异构性
  • 解决的问题:
    • 系统异构性(Systems Heterogeneity): 联邦学习中的设备(本地参与方)具有显著的系统特性差异。包括硬件配置、计算能力、网络速度等方面的差异。
    • 统计异构性(Statistical Heterogeneity): 联邦学习中的数据在网络中的不同设备上分布不同(Non-IID)
    • 贡献点:
      • 提出FedProx算法
      • 在目标函数中引入近端项,提高方法的稳定性
      • 通过有界不相似假设在理论上证明收敛分析
      • 通过实验证明了FedProx在异构网络中的优越性

3. 问题描述:System model/架构/对问题的形式化描述

在这里插入图片描述

4. 解决方法

  • 执行流程:
    在这里插入图片描述 在这里插入图片描述
  • 挑战问题怎么解决:
    • 通过允许不经精确解w*解决FedAvg中轮次E固定引起设备不同算力下存在的掉队者问题,解决系统异构性
    • 加入近端项保证局部训练模型不偏离全局模型过远,解决统计异构性
  • 性能保证(performance guarantee):有界不相似假设(没看懂)

5. 效果:

  • 实验设置:
    • 系统异构性:实验设定了局部迭代轮次E=20,再将低于E的轮次随机的分配0%,50%,90%的客户端。
      在这里插入图片描述

    • 统计异构性:规定固定的迭代轮次E(保证系统不异构)
      在这里插入图片描述

影响收敛性的关键参数为:局部迭代轮数E,是否加入近端项𝜇≠0

  • 对比实验 :FedProx在FedAvg的基础上改进,当u=0时就退化为FedAvg,以上两个实验就是在与FedAvg对比
  • 超参数确定实验
    对于IID数据集,µ从1开始,对于其他Non-IID数据集,µ从0开始(这样的初始化对FedProx是不利的)。当连续5轮损失减少时,减少0.1µ,损失增加时,增加0.1µ。
    在这里插入图片描述

一个大的μ 会迫使更新接近起始点,减缓收敛速度,小的μ 可能不会产生任何影响。

6. (备选)自己的思考:

论文对你的启发,包括但不限于解决某个问题的技术、该论文方法的优缺点、实验设计、源码积累等。

了解了什么叫基线

7. 附录:CCF推荐国际学术刊物目录-中国计算机学会

  • 16
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向大蒜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值