谷歌 DeepMind 开源新一代天气预测 AI 模型 GenCast,GenCast 以最先进的精度预测天气和极端条件的风险
天气预报对人们生活和决策至关重要,但传统 NWP 模型存在不确定性,且计算资源需求大、运行慢。机器学习在天气预报中虽有进展,但此前的方法在不确定性量化等方面存在不足。GenCast 作为新的概率天气模型,相比欧洲中期天气预报中心(ECMWF)的顶级业务集合预报系统 ENS,具有更高的技能和速度,能提供更准确和可靠的概率天气预报,为决策提供更有力支持。
GenCast 基于扩散模型,通过学习历史天气数据(如 ECMWF 的 ERA5 数据集)来模拟未来天气状态的概率分布,生成全球 15 天的集合预报,分辨率为 0.25°。其采样过程利用噪声逐步迭代生成预测轨迹,每个时间步的预测基于前两个时间步的天气状态,通过神经网络去噪器进行计算,去噪器架构包括编码器、处理器(基于球形网格的图变换器)和解码器。
与 ENS 对比评估了 GenCast 在多个方面的性能,包括边际预报分布(如 CRPS 技能评分、集合校准、极端天气预测)和联合预报分布(如空间池化评估、区域风电预测、热带气旋路径预测)。结果显示,GenCast 在多数评估指标上表现更优,如在 97.2% 的评估目标上 CRPS 技能评分显著优于 ENS,对极端天气预测更准确,在区域风电预测和热带气旋路径预测中也表现出色。
GenCast 的优势在于能生成更准确的概率天气预报,速度快,且在多个关键方面表现出色。局限在于计算成本较高,分辨率受限于训练数据。未来可通过提高分辨率、探索效率提升技术(如蒸馏)和利用更多运行数据进行微调等方式进一步改进,有望在更广泛领域提高天气预报的准确性、效率和可用性,推动天气预报领域发展,展示了生成式人工智能在复杂动态数据分布建模方面的潜力。
github地址:https://github.com/google-deepmind/graphcast?tab=readme-ov-file
官网介绍:https://deepmind.google/discover/blog/gencast-predicts-weather-and-the-risks-of-extreme-conditions-with-sota-accuracy/
自然杂志论文地址:https://www.nature.com/articles/s41586-024-08252-9