GenCast:谷歌DeepMind推出的AI气象预测模型

❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦


🚀 快速阅读

  1. 预测范围:提供长达15天的全球天气预报,每12小时更新一次。
  2. 技术优势:基于扩散模型,适应地球的球面几何形状,生成未来天气状态的条件概率分布。
  3. 应用广泛:支持灾害预防、能源管理、农业规划、交通与物流、城市规划与建设等多个领域。

正文(附运行示例)

GenCast 是什么

公众号: 蚝油菜花 - graphcast

GenCast是由DeepMind推出的革命性AI气象预测模型,基于扩散模型技术,提供长达15天的全球天气预报。GenCast在97.2%的预测任务中超越全球顶尖的中期天气预报系统ENS,尤其在极端天气事件的预测上表现突出。与传统模型相比,GenCast能在8分钟内生成预报,显著提高预测效率。GenCast已经开源,包括代码和模型权重,能支持更广泛的天气预报社区和研究。

GenCast 的主要功能

  • 中长期天气预报:提供长达15天的全球天气预报,每12小时更新一次。
  • 高分辨率预测:模型用0.25°纬度-经度分辨率运行,提供高分辨率的预测。
  • 集合预测:与传统单一预测不同,GenCast生成50个或更多的预测集合,每个代表可能的天气轨迹,表达不确定性。
  • 极端天气预测:GenCast擅长预测极端天气事件,如热浪、强风、热带气旋等。
  • 快速预测:在Google Cloud TPU v5上,GenCast只需8分钟即可生成15天的天气预报集合。

GenCast 的技术原理

  • 扩散模型:基于扩散模型,一种生成式AI模型,用于生成图像、视频和音乐等领域的新样本。模型基于迭代细化过程从噪声中生成未来状态的样本。
  • 地球球面几何适应:GenCast特别适应地球的球面几何形状,能学习准确生成未来天气情景的复杂概率分布。
  • 条件概率分布:GenCast模型了未来天气状态的条件概率分布,给定当前和之前的天气状态。
  • 神经网络架构:GenCast用包含编码器、处理器和解码器的神经网络架构。编码器将输入从经纬度网格映射到内部学习表示,处理器(图变换器)关注其邻域节点,解码器将结果映射回原始网格。
  • 训练与预测:GenCast用ECMWF的ERA5档案中四十年的历史天气数据进行训练,学习全球天气模式,自回归地生成15天的集合预报。
  • 并行生成:由于每个时间步都是从噪声初始化的,基于用不同的噪声样本重复生成过程,生成预测集合。

如何运行 GenCast

GenCast的运行和训练代码可以在其GitHub仓库中找到,并且提供了详细的运行教程。以下是一个简单的运行示例:

# 示例代码
import gencast

# 加载预训练模型
model = gencast.load_pretrained_model('GenCast 0p25deg <2019')

# 生成预测
predictions = model.predict(input_data)

# 打印预测结果
print(predictions)

资源


❤️ 如果你也关注 AI 的发展现状,且对 AI 应用开发非常感兴趣,我会每日跟你分享最新的 AI 资讯和开源应用,也会不定期分享自己的想法和开源实例,欢迎关注我哦!

🥦 微信公众号|搜一搜:蚝油菜花 🥦

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值