Probabilistic weather forecasting with machine learning
引用方式:Price I, Sanchez-Gonzalez A, Alet F, et al. Probabilistic weather forecasting with machine learning[J]. Nature, 2024, 526(7573): 415-422.
摘要
天气预报存在不确定性,传统数值天气预报(NWP)有局限,机器学习(ML)天气预报虽有进展但未解决不确定性量化问题。本文介绍 GenCast,一种概率天气模型,其精度和速度超欧洲中期天气预报中心(ECMWF)的集合预报系统(ENS)。GenCast 用再分析数据训练,可生成 15 天全球集合预报,分辨率 0.25°,8 分钟完成,在多数目标评估中表现优于 ENS,能更好预测极端天气、热带气旋路径和风电生产,开启天气预报新篇章,提升决策准确性与效率。
研究背景
天气系统复杂且具高度非线性,传统 NWP 依赖大气物理模拟,虽能提供预报但存在误差与不确定性。ML 在天气预报有进展,但此前 ML 模型多关注确定性预报,未充分考虑不确定性量化,在预报准确性与可靠性上不及 NWP 集合预报,如 ENS 等虽能一定程度模拟概率分布,却有误差大、运行慢、工程耗时问题,因此需更优模型提升预报质量。
研究意义
准确概率天气预报对公众、政府和组织决策意义重大,如日常活动安排、灾害防御、能源规划等。GenCast 提升预报技能,为各领域提供可靠天气信息支撑,助于优化资源配置、降低灾害损失、提高能源利用效率,推动天气相关决策从经验性、定性向精准化、定量化转变,增强社会应对天气变化能力与韧性,促进经济社会可持续发展及生态环境保护。
资料与方法
-
GenCast 模型构建
-
以 ERA5 再分析数据(1979 - 2018 年)训练,数据含多表面与大气变量。
-
为条件扩散模型,通过迭代优化噪声样本生成预报轨迹,其架构含编码、处理与解码部分,处理部分为图变换器,可学习大气状态复杂关系及空间依赖性。
-
作二阶马尔可夫近似处理,依 ERA5 数据连续分析值初始化,基于当前及前序天气状态建模未来天气条件概率分布,进而生成预报轨迹集合。
-
-
对比实验设置
-
将 GenCast 与 ENS 及 GenCast-Perturbed 对比。ENS 为顶级 NWP 集合预报,对其重网格处理;GenCast-Perturbed 由 GenCast 架构衍生的确定性模型经高斯过程噪声扰动生成集合预报。
-
依标准验证实践,以 ERA5 分析数据为真值评估模型,于 2019 年测试,按 UTC 06:00 和 18:00 初始化 ML 模型确保公平,用多种指标从边际与联合预报分布评估模型性能,如 CRPS、RMSE、Brier 技能评分、REV 及 rank 直方图等。
-
研究结果
-
GenCast 样本真实性
:对台风 “海贝思” 预报,其预报样本清晰,球谐功率谱与 ERA5 匹配良好,像 ENS 一样能代表真实天气样本,而确定性模型训练求最小均方误差致预报模糊,GenCast 集合平均虽模糊但符合概率预报特性。
-
边际预报分布技能
-
集合技能
:以 CRPS 衡量,GenCast 在 1320 个变量、时效与垂直层次组合的 97.2% 上显著优于 ENS(P<0.05),多在短时效(3 - 5 天)及特定变量上提升明显,如表面变量、高层温湿度,GenCast-Perturbed 也有较好表现但逊于 GenCast。RMSE 指标中,GenCast 集合均值在 96% 目标上与 ENS 相当或更优,78% 目标上显著更优(P<0.05)。
-
集合校准
:GenCast 校准良好,类似 ENS,其传播 / 技能分数近 1 且 rank 直方图平坦,GenCast-Perturbed 则过度自信,传播 / 技能分数小于 1 且 rank 直方图呈 U 形。
-
局地表面极端情况
:预测 2 米温度、10 米风速和平均海平面压力极端值,Brier 技能评分里,GenCast 在多阈值和时效上显著优于 ENS(P<0.05),REV 曲线表明 GenCast 在不同成本 / 损失比下预测极端高温和风速超 ENS,在其他极端变量和阈值也有良好表现。
-
-
联合预报分布技能
-
空间池化评估
:计算平均池化和最大池化的边际 CRPS 分数卡,GenCast 在 5400 个验证目标里,平均池化 CRPS 的 98.1% 和最大池化 CRPS 的 97.6% 优于 ENS,表明其更好捕捉空间依赖性,GenCast-Perturbed 表现次之。
-
区域风电预报
:在风电预报实验中,GenCast 在 2 天内 CRPS 较 ENS 优约 20%,2 - 4 天优 10 - 20%,7 天内仍有显著改善,利于风电并网与能源管理,GenCast-Perturbed 改进程度较小。
-
热带气旋预报
:评估气旋轨迹,GenCast 集合平均轨迹精度在 1 - 4 天领先时段比 ENS 高 12 小时(P<0.05);轨迹概率预报的 REV 指标上,GenCast 在多数时效和成本 / 损失比下优于 ENS,助于热带气旋防御决策。
-
研究结论
GenCast 满足概率天气模型关键要求:能生成清晰个体天气轨迹集合与真实功率谱;边际预报分布校准佳、预测极端事件准;在捕捉联合分布时空依赖性的区域风电和热带气旋轨迹预报等评估中表现优,比 ECMWF 的 ENS 更精准快速。未来可从提升分辨率、优化计算效率、用业务数据微调改进 GenCast,其成果开启天气预报新方向,展现生成式 AI 处理复杂气象分布、支持关键决策的能力,为气象预报发展奠定基础、指引方向。
图 1 GenCast 生成预报的示意图:蓝色框展示基于输入(X⁰, X⁻¹),初始噪声样本 z₀¹ 如何由神经网络细化函数 rₑ(绿色框,由 θ 参数化)细化。所得 z₁¹ 是首次细化的候选状态,此过程重复 N 次。最终 zᴺ¹ 作为残差加到 X⁰ 以生成下一时刻天气状态 X¹。此过程以(Xʳ, Xʳ⁻¹)为条件自回归重复 T = 30 次,且每步使用新初始噪声样本 z₀ᵗ 生成完整天气轨迹样本(为视觉清晰,当前状态 Xᵗ 下方括号中展示前一状态(Xᵗ⁻¹),但注意它不作为预测 Xᵗ⁺¹ 的残差加到 zᴺʳ)。由独立 Z₀ᴸᴱᴳᴛ 噪声样本生成的各轨迹代表来自 P (X¹:ᵀ|X⁰, X⁻¹) 的样本。
图2. 预报和热带气旋路径可视化:a, ERA5 分析中 2019 年 10 月 12 日 06:00 UTC 700 hPa 比湿的特定湿度。b - d, h - j GenCast 预报样本;e, GenCast 集合平均;f, GenCast - Perturbed 样本 1;g, a、b、e 和 f 中状态空间功率谱,线颜色与面板框架匹配,显示 GenCast 样本谱与 ERA5 紧密匹配,而 GenCast 集合平均与 GenCast - Perturbed 较模糊;n - q, 基于 ERA5(红色)和 GenCast 热带气旋轨迹集合(蓝色)的台风海贝思轨迹,直至气旋登陆日本前 4 小时有效时间,GenCast 预报在 7 天、3 天、5 天和 1 天时效展示,蓝色和红色圆圈为有效时间气旋位置,长时效轨迹分散,短时效预测不确定性缩至小范围轨迹,台风海贝思在 2019 年热带气旋中代表 GenCast 集合平均位置误差的 55 百分位数。
图3. GenCast 的边缘预报分布精准且校准良好:a, 2019 年 GenCast 与 ENS⁴ 的 CRPS 得分。计分卡对比 GenCast 和 ENS 在所有变量和八个压力层级的 CRPS 技巧,深蓝单元格表示 GenCast 的 CRPS 比 ENS 优 20%(即更低)的变量、时效和层级组合,深红单元格表示 ENS 的 CRPS 低 20%(白色为表现相同),结果显示 GenCast 在 97.2% 组合上显著优于 ENS,阴影区域表示无模型显著更优;b - f, GenCast 和 ENS 对选定变量的传播 / 技巧得分,两模型通常校准良好,传播 / 技巧接近 1;g, h, 预测 2 m 温度和 10 m 风速超过 99.99 百分位数相对于气候学的 REV,GenCast(蓝色曲线)在 1 天、5 天和 7 天时效及所有成本 / 损失比下显著(P < 0.05)优于 ENS(黑色曲线),除无模型优于气候学的(成本 / 损失,时效)组合。
图4 GenCast 在区域风电和热带气旋路径预报上优于 ENS:a, 不同大小汇集区域内风电场位置总和的总风电平均汇集和最大汇集 CRPS 相对值,越低越好;b, 集合平均热带气旋轨迹位置误差(km);c, 1 天、3 天和 5 天时效热带气旋路径概率预报的 REV,所有图展示 GenCast 和 ENS⁴ 对比
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。