使用XGB进行多标签分类预测中,出现错误“label must be in [0, num_class).”

在多标签分类任务中使用XGB进行训练时遇到错误,问题出在标签值不满足XGB的要求。报错信息提示标签需在[0,num_class)范围内。解决方案是将三分类标签-1,0,1改为0,1,2,从而使模型能够正确运行。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:在对多标签分类预测的任务中,使用XGB进行分类。但在运行“xgb_model = xgb.train(params, dtrain, num_rounds)”时出现了错误。错误代码如下:

28 # 训练XGBoost模型
     29 num_rounds = 100
---> 30 xgb_model = xgb.train(params, dtrain, num_rounds)     # 【这里出现了错误】
     31 
     32 # 在测试集上评估模型

报错信息:

SoftmaxMultiClassObj: label must be in [0, num_class).

对报错信息进行分析:

通过报错信息发现,由于我是做三分类,习惯上将标签分类“-1,0,1”。所以导致分类标签不符合该函数的规范。该函数需要标签从0开始。

解决方法:

将之前设置的标签”-1,0,1“改成“0,1,2”就能够正常运行这段代码了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值