知识图谱+大模型的智能学习系统是由方图数据软件股份有限公司推出的一个利用人工智能技术来提升教育体验、优化教学资源和个性化学习路径的先进教学平台。
1
智能学习系统由哪几部分构成?
智能学习系统中的课程图谱系统通过精选的教材、课程大纲和教师讲义等课程资料作为数据源,利用智能识别技术精准提取关键知识点,并巧妙地将这些知识点及其相互关系构建成知识图谱。该系统不仅通过图谱化的界面直观展示知识点间的关联,还实现了全局性的知识展示。此外,系统还融合了先进的生成式大模型,不仅赋予了系统灵活的内容创造能力,还极大增强了数据处理的能力。
学习行为分析系统的教师端通过数字化手段详细记录、管理和分析教师授课行为、学生学习表现以及各类教学活动的数据。系统的核心是一个学生学习行为数据库,基于数据进行深入的分析,为学生提供个性化的网课推荐、习题推荐,以及针对学生的薄弱知识点进行扫盲。系统不仅追踪学生详细的学习时间、频率和参与度,还记录了学生在课堂上的提问次数、回答次数,以及他们与同学和教师之间的互动次数。这些数据的集合为教师提供了一个全面的视角,从而更有效地指导和支持学生的个性化学习需求。
学习行为分析系统教师端
学习行为分析系统的学生端是一个高度个性化的学习档案库,它结合了智能辅导系统,利用先进的数据分析技术全面追踪和记录学生的个人学习历程。系统不仅关注学生的互动参与度,还记录了他们的学业成就。通过分析学生的行为轨迹和学习数据,系统能够智能推荐最适合的网络课程、练习题和知识点复习材料,帮助学生强化知识和技能。系统还为学生提供学习行为统计功能,学生可以定制自己的学习路径,并通过反馈循环不断优化学习策略。系统能够生成详尽的成绩分析报告,帮助学生识别自己的强项和弱点。
学生行为分析系统学生端
智能问答知识库是一种先进的信息管理系统,它专用于构建一个问答知识库,通过结合大模型技术,能够实现拟人化的回复。该系统的特性在于它具备强大的多语义理解和意图识别能力,能够基于上下文语境关联,智能地识别用户的意图,从而提供精准的回复和智慧的引导。此外,系统还能够建立学科、专业、课程的知识场景,为用户打造专属的知识检索和智能问答应用,极大地提升了信息获取的效率和准确性。
2
智能学习系统为学生和老师各带来什么优势?
智能学习系统将继续革新教育领域,提高教育的质量和可及性,为学生和教师创造更多可能性。以下是关键优势:
1.通过构建专业课程培养方案图谱,提高知识整体性,帮助学生更好地构建自己的知识体系。
培养方案知识图谱
2.通过课程知识图谱构建功能,将复杂的非结构化知识体系转化为结构化的知识点,极大地降低了知识粒度,易于学生高效识别并消灭知识盲区。
课程知识图谱
3.通过自适应学习功能,利用知识图谱和数据分析技术,能够精准检测学生的学习情况,从而提供个性化的学习内容推荐和定制化的学习策略。
学生学习行为分析系统学生端
4.通过智能备课与教研功能,教师能够深入了解学生的学情,从而优化教学策略,包括时间配置和习题配置等。系统通过分析每个学生在各个知识点上的花费时间,计算知识点的平均学习时长,并追踪学生的预习轨迹,为教师提供了丰富的数据支持。
学习行为分析系统教师端
5.通过智慧课堂功能,教师可以在课前、课中、课后综合运用教师端学生学习行为分析的数据挖掘和智能化能力,从数据中洞察学生的学习需求和挑战,实现精准教学和因材施教。
6.通过智能问答系统,教师获得了一个强大的辅助工具,它能够24小时不间断地满足学生完成课程辅导的需求。
智能问答系统
7. 智慧教学系统在教育管理方面带来了显著的优势,特别是在教学资源的共享、智能教育管理以及教育评估与监测方面。通过集中化的平台,系统促进了教学资源的高效共享。
3
图谱结合大模型的教学系统案例有哪些?
通过结合知识图谱和大语言模型,智慧教学系统为高等教育机构提供了强大的教学支持。以重庆大学为例,其学银在线平台利用知识图谱和问题图谱存储专业知识,为学生提供了一个丰富的学习资源库。同样,武汉工程大学优学院也采用了知识图谱来存储和组织专业知识,供学生学习。
在技术社区方面,CSDN运用大语言模型开发了问答机器人,为开发者提供了一个交互式的学习体验。此外,佐治亚理工大学实施了问答机器人和学习情况追踪管理系统,以增强学生的学习体验和教师的教学效果。
重庆交通大学则结合了知识图谱和问题图谱来存储专业知识,并实现了学习情况的追踪管理,这不仅提高了教学资源的可获取性,还优化了教学过程的监控和评估。
大量案例展示了智慧教学系统如何利用知识图谱和大模型来提升教育质量和学习效率,实现了教育资源的数字化管理和个性化教学策略的实施。
4
核心技术支撑Gridgraph是什么?
在智慧教学系统中,图数据库的应用显著提升了对“关系”的重视,相较于传统的关系数据库,图数据库在处理和表示数据间的复杂联系方面具有独特优势。通过图数据库,教育者能够创建和查询各种类型的图谱,如事件图、计算机网络、疾病路径、食物网、粒子网络和地下网络等。这些图谱直观地展示了不同概念和实体之间的相互作用和依赖关系,有助于学生在多个学科领域中构建全面的知识体系。
图数据库应用实例
自研图数据库在世界人工智能大会(WAIC2021)上正式发布,展示了其在人工智能领域的最新进展和应用潜力。此外,自研图数据库还通过了中国信息通信研究院第十五批“可信数据库”评估评测,证明了其安全性和可靠性。核心技术的自主可控性确保了系统在数据处理和分析方面的独立性和灵活性,为智慧教学提供了强大的支持。
智能数据库与大模型的结合,标志着数据平台与人工智能技术的高度融合。这一结合具备三点重大创新:
- 通过综合数据分析,将图数据库与多维数据库相结合,为教育工作者和学生提供了全面的数据检索与分析能力。
- 系统具备精准回答生成能力和高效的关系处理能力。
- 通过利用数据库的高效查询能力,以及RAG检索的增强,系统能够实现高效的Prompt设计,有效提升内容生成的质量。
智能数据库与大模型的结合,不仅优化了数据管理流程,还增强了教学内容的个性化和互动性,为智慧教学系统带来了前所未有的智能化水平。
自然语言查询数据库是利用自主研发的数据库技术和人工智能大模型的强大规模参数与泛化能力,共同打造的新一代教学系统的核心组成部分。系统通过先进的数据处理能力,使得用户能够使用自然语言进行查询,从而极大地简化了数据检索过程,提高了用户体验。
自然语言查询数据库流程图
5
系统特性是什么?
系统为用户提供了一套全面而强大的工具集,以支持高效的教学管理。
- 系统的功能特性包括用户管理、访问控制和审计日志,这些功能确保了系统的安全性和合规性。用户管理功能允许管理员轻松地添加、删除和配置用户权限,而访问控制则确保只有授权用户才能访问敏感数据和资源。审计日志则为系统的操作提供了透明的跟踪记录,有助于监测和审查用户活动。
- 数据安全方面,系统提供了全量备份和增量备份功能,确保数据的完整性和可恢复性。
- 系统提供了导入导出工具和批量导入工具,使得数据的迁移和处理变得简单快捷.
- 系统提供了可视化界面,使得用户可以通过直观的操作进行数据管理和分析。对于更高级的用户,系统还提供了API编程接口和命令行操作接口,支持定制化和自动化任务的执行。
自然语言查询数据库是由一支经验丰富的专业团队开发的,团队成员拥有在Oracle全球研发团队的多年领导和核心研发背景,专长于数据库管理系统、数据计算分析、云计算和中间件平台。他们成功开发了通用数据存储引擎、图数据库和多维数据库等关键技术,提升了数据处理效率和查询直观性,为智慧教学系统在教育领域的应用提供了坚实的数据支持。
6
智能学习系统具备哪些核心功能和核心优势?
智慧教学系统的核心功能在于利用人工智能和大数据技术,实现个性化教学和智能化学习体验。具体六点核心功能如下:
- 知识体系框架构建。通过平台的智能特性,使学生能够快速了解和掌握知识点。系统能够识别和展示每个知识点的标签作为知识的元数据,帮助学生理解知识点的核心内容和它在整个课程体系中的位置,快速建立知识体系框架。
- 基于AI的资源推荐。基于AI+知识图谱,给学生推荐相关知识点的内容,提供相关的优质学习资源和个性。
- 智能图谱搜索。系统支持通过学科分类进行筛选,使用户能够根据自己的学术领域或兴趣快速定位相关的图谱资源。此外,系统还提供了通过图谱名称或知识点名称进行检索查询的功能。用户只需输入关键词,系统能智能地返回相关的图谱结果。
- 资源AI分析与挂载,为用户提供了多种灵活的方法来关联课程视频和学习导航知识点视频,包括手动挂载、外部工具挂载、智能挂载等。
- 图谱智能呈现,为用户提供了丰富的视图选项来查看和理解知识图谱。系统支持静态图谱、动态图谱、思维导图和知识点列表。
- 知识图谱智能构建,平台支持多种方式构建知识图谱,包括格式化构建、手动构建、智能构建等。
智慧教学系统极大地提升了学习资源的匹配度和学习效率,使学生能够在丰富的、个性化的学习资源中获得支持,从而促进了学生的深入学习和全面发展。
智慧教学系统的核心优势在于其全面而创新的设计,通过其全流程AI辅助、多渠道构建方式、课程图谱检索学习、人机协同关联资源、课程图谱形态多样化和一键查看预览功能,为用户提供了一个全面、高效和个性化的学习平台。
科技引领未来,教育成就梦想!
© 2024 北京市信息服务工程重点实验室:信息服务重点实验室
方图数据(北京)软件股份有限公司:GalaxyStream 版权所有