底层逻辑之:欧拉-拉格朗日方程(Euler-Lagrange equations)&变分法(Calculus of Variations)的核心思想

0前言:

0.1 17世纪的泛函(Functional)分析与变分法Calculus of Variations)

在17世纪,数学家们开始遇到一些需要处理函数集合的问题,这些问题涉及到函数的极值、曲线的长度、曲面的面积等。这些问题无法用传统的微积分方法来解决,因为微积分主要研究的是单个函数的性质和行为。因此,数学家们开始探索一种新的数学工具来处理这类问题,这就是泛函的雏形。

泛函是一种特殊的映射,它的特点在于其输入不是单个或多个数值变量,而是一个函数(或称为函数曲线、函数图像等)。这个函数可以看作是一个无穷维的“向量”,因为它包含了在定义域内所有点上的取值信息。泛函则是对这个“向量”进行某种运算或评估,得出一个实数(或复数)作为结果。

在许多实际问题中,我们需要对函数进行整体性的评估或优化,而不是仅仅关注函数在某一点的取值。例如,在物理学中,我们可能需要计算一个物理系统在不同状态下的总能量或总动量,这些量都是函数(如状态函数)的泛函。

0.2 最速降线问题与变分法的萌芽

1696年,约翰·伯努利提出了著名的最速降线问题,即一个质点在重力作用下从一个给定点滑到另一个给定点,沿着什么曲线滑下所需时间最短。这个问题引发了数学家们的兴趣和研究。虽然当时并未明确提出泛函的概念,但最速降线问题可以看作是泛函分析的一个早期应用实例。

欧拉在1733年通过变分原理解决了最速降线问题,这标志着变分法的正式诞生。变分法是一种求解泛函极值的方法,它可以说是最初的泛函分析。在18世纪,拉格朗日进一步发展了变分法,系统性地提出了拉格朗日乘数法和欧拉-拉格朗日方程,也就是目前变分法的核心:欧拉-拉格朗日方程


1.欧拉-拉格朗日方程的提出- 最速降线问题的解决

1.1 问题描述

假设物体从原点O点开始出发,沿任意曲线运动到A点(O点坐标为(x1,y1),A点坐标为(x2,y2),A点低于O点),物体运动过程中只有重力做功,无摩擦力。何种曲线才能让物体从A滑到b的时间最短?

1.2 构建-泛函-数学模型

物体沿曲线下滑的速度由重力势能转化为动能决定。设物体在曲线上的任意一点 (x_t,y_t)处的速度为 v,设此时物体距离出发点的距离纵向距离为y,横向距离为x,则根据能量守恒定律E=1/2\cdot m\cdot v^2=g\cdot m\cdot y,有:

  v = \sqrt{2gy}

物体沿曲线从 A到 B 所需的时间 T可以表示为:

T = \int_{x_1}^{x_2} \frac{ds}{v}

其中 ds 是曲线上的微小弧长,可以表示为:

ds = \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx

这里的微小弧长就是勾股定理,x的长度参考长度为1,通过斜率(dy/dx)计算斜面的参考长度。

将 v和 ds 代入 T 的表达式,得到:

T = \int_{x_1}^{x_2} \frac{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{ \sqrt{2gy}} dx

在这里,由于不知道y与x之间的映射关系,仅利用经典的微积分理论体系,T的数值不可能被计算出来,也无法解决T的极值问题。

但是还有一种思路:将x和y的映射关系(函数)同样作为未知函数输入,将\frac{dy}{dx}作为未知变量。于是,令:

F(y,x,y') = \frac{\sqrt{1 + (y')^2}}{\sqrt{2gy}}, \quad y' = \frac{dy}{dx}

原式简写为:

T[y]= \int_{x_1}^{x_2} F\left( y, x,y'\right) dx

在这里,自变量变为数集y和映射集\frac{dy}{dx},已经不是简单的多个数值自变量的函数方程了,其同时将数值元素的映射关系作为自变量。为了进行区分,这种特别的函数称为泛函(Functional),即更加广义的函数(Function

在泛函T[y]中,y代表的一系列的数值集合,在定义\quad y' = \frac{dy}{dx}中,x和y之间存在某一种映射关系,这些数值与映射关系的集合构成了泛函系统,而输出T[y]则是一个实数值。在这一问题中,我们求解的不是T[y]这一实数值,而是T[y]取极值时,泛函系统中x与y的映射关系(表达式)。

1.3 变分法与欧拉拉格朗日方程 

已知:

T[y] = \int_{x_1}^{x_2} F\left(y,x,y'\right) dx, \quad y' = \frac{dy}{dx}    (1)

假设泛函 T[y] 在某函数y_0(x)处取得极值,那么对于y_0(x) 的任何微小变化 \delta y(x),泛函的变化量 \delta T都应该为零(可以忽略不计)。这是因为,如果\delta T不为零,那么我们就可以通过调整\delta y(x)的大小和方向来使得 T[y] 在 y_0(x)附近取得更大的值(对于极大值)或更小的值(对于极小值),这与 T[y]y_0(x) 处取得极值的假设相矛盾。

这一原理与函数极点处导数为0有异曲同工之妙。对于普通函数而言,其极点前后点的导数也是趋近于0的(线性近似)。

 为了更好表述这一问题,对于泛函中映射关系y(x)的任何微小变化 \delta y(x),学者们称之为变分\delta y(x)y(x)的变分。而利用变分概念求解y(x)的映射结构的数学方法被称为变分法。

也就是说:如果y(x) 是使 T[y]  取得极值的函数,那么对于任何满足边界条件的变分\delta y(x),即将函数进行微小变化:y(x)\rightarrow y(x) +\varepsilon \eta(x) (其中 \varepsilon 是一个很小的参数,且  \eta(x_1) = \eta(x_2) = 0 ),对应泛函的变化 \delta T 必须为 0:

  1. \eta(x)是什么 ?

    \eta(x) 是一个任意的函数,它表示函数 y(x) 的一个微小变化的方向和形状。当我们想要研究泛函 T[y]在某个函数 y(x) 附近的极值行为时,我们会考虑 y(x) 沿着不同方向上的微小变化。具体来说,η(x) 可以是任何满足一定条件(比如连续、可微等)的函数,它用于构造 y(x) 的微小变化 y(x)+εη(x)。

  2. 为什么 ε 是一个很小的参数?
    在变分法中,当我们想要研究一个泛函 T[y] 的极值时,我们考虑函数 y(x) 的微小变化。这种微小变化可以通过引入一个小参数 ε 来表示,它乘以一个任意的函数 η(x),即 y(x)\rightarrow y(x) +\varepsilon \eta(x)。这里,ε 很小是为了保证变化是微小的,从而可以在这一点上进行线性近似,这是变分法的基础。
  3. 为什么\eta(x_1) = \eta(x_2) = 0
    在变分问题中,函数 y(x) 通常在区间的端点 x1​ 和 x2​ 处满足一定的边界条件。当我们在研究 y(x) 的微小变化时,我们希望这些变化不会破坏原有的边界条件(该曲线必须经过最速降线问题中的起点和终点)。具体来说,假设 y(x) 在 x_1x_2处分别满足边界条件 y(x_1)=y_1y(x_2)=y_2,仅\eta(x_1) = \eta(x_2) = 0时,y(x) +\varepsilon \eta(x)x_1x_2依然等于y_1y_2

 因此,该问题可以表述为:对y(x) 函数进行变化时,泛函的变化\delta T为0.

\delta T = \frac{d}{d\varepsilon} T[y + \varepsilon \eta] \Big|_{\varepsilon = 0} = 0

y(x) \rightarrow y(x) + \varepsilon \eta(x)代入泛函式(1)有:

T[y + \varepsilon \eta] = \int_{x_1}^{x_2} F\left(x, y + \varepsilon \eta, y' + \varepsilon \eta'\right) dx

其中  \eta' = \frac{d\eta}{dx}。展开 F(x, y + \varepsilon \eta, y' + \varepsilon \eta') 的泰勒级数(仅保留一阶项),得:

F(x, y + \varepsilon \eta, y' + \varepsilon \eta') = F(x, y, y') + \varepsilon \frac{\partial F}{\partial y} \eta + \varepsilon \frac{\partial F}{\partial y'} \eta' + \mathcal{O}(\varepsilon^2).

忽略高阶小量\mathcal{O}(\varepsilon^2),进行变化可得:

\delta T =T[y + \varepsilon \eta] - T[y] = \varepsilon \int_{x_1}^{x_2} \left( \frac{\partial F}{\partial y} \eta + \frac{\partial F}{\partial y'} \eta' \right) dx    (2)

可以注意到上式中有 \eta',为了简化,使用分部积分将  \eta' 转换为 \eta 的形式。根据分部积分公式:

\int_{x_1}^{x_2} \frac{\partial F}{\partial y'} \eta' dx = \left[\frac{\partial F}{\partial y'} \eta \right]_{x_1}^{x_2} - \int_{x_1}^{x_2} \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) \eta dx

注:[\cdot ]_{x_1}^{x_2}:这表示对括号内的表达式在 x1​ 和 x2​ 两点进行求值,并计算它们的差。

由于 \eta(x_1) = \eta(x_2) = 0(微小变化在边界处为零),第一项 \left[\frac{\partial F}{\partial y'} \eta \right]_{x_1}^{x_2}消失,因此:

\int_{x_1}^{x_2} \frac{\partial F}{\partial y'} \eta' dx = - \int_{x_1}^{x_2} \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) \eta dx

将这一结果代入式(2),令泛化变化等于0,变化得到:

\delta T = \varepsilon \int_{x_1}^{x_2} \left( \frac{\partial F}{\partial y} - \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) \right) \eta dx=0

由于 \eta(x)是任意函数,唯一可能的情况是积分中的括号为零,即:

\frac{\partial F}{\partial y} - \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) = 0      (3)

而推导出来的式3,就是大名鼎鼎的欧拉-拉格朗日方程(Euler-Lagrange equations)

无论是在何种维度的映射中,泛函都满足边界效应,消去差值部分,如本例子中的 \left[\frac{\partial F}{\partial y'} \eta \right]_{x_1}^{x_2},因此总能简化为欧拉-拉格朗日方程。

欧拉-拉格朗日方程的第二种表达式:

若函数 F  是 x,y,y' 的函数,即 F = F(y, y', x)。其全导数为:

\frac{dF}{dx} = \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} + \frac{\partial F}{\partial y'} \cdot \frac{d^2y}{dx^2} + \frac{\partial F}{\partial x}    (4)

- \frac{\partial F}{\partial y}  是 F 对 y 的偏导数,乘以  \frac{dy}{dx} = y'

\frac{\partial F}{\partial y'}是  F 对 y'的偏导数,乘以\frac{d^2y}{dx^2} = y''

可得:

\frac{\partial F}{\partial y'} \cdot y'' =\frac{dF}{dx}- \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} -\frac{\partial F}{\partial x}       (5)

   又因为:

\frac{d}{dx}(y'\cdot \frac{\partial F}{\partial y'})=y'\cdot \frac{d}{dx}(\frac{\partial F}{\partial y'})+y''\cdot \frac{\partial F}{\partial y'}  (6)

将式5代入式6代入得

\frac{d}{dx}(y'\cdot \frac{\partial F}{\partial y'})=y'\cdot \frac{d}{dx}(\frac{\partial F}{\partial y'})+(\frac{dF}{dx}- \frac{\partial F}{\partial y} \cdot \frac{dy}{dx} -\frac{\partial F}{\partial x})

化简:

\frac{d}{dx}(y'\cdot \frac{\partial F}{\partial y'})=y'\cdot (\frac{d}{dx}(\frac{\partial F}{\partial y'}-\frac{\partial F}{\partial y}))+(\frac{dF}{dx}-\frac{\partial F}{\partial x})                           

根据欧拉-拉格朗日方程:\frac{d}{dx} \frac{\partial F}{\partial y'} = \frac{\partial F}{\partial y},代入上式

 \frac{d}{dx}(y'\cdot \frac{\partial F}{\partial y'})=\frac{dF}{dx}-\frac{\partial F}{\partial x}

  即:  \frac{d}{dx}(y'\cdot \frac{\partial F}{\partial y'}-F)+\frac{\partial F}{\partial x}=0  (7)

式7就是欧拉-拉格朗日的第二种表达式,适用于二元素的映射泛函 ,即F = F(y, y', x)

       特别的,若F中不显含x,则F对x的全导数处处为0。

根据F的定义式F(y,x,y') = \frac{\sqrt{1 + (y')^2}}{\sqrt{2gy}}, \quad y' = \frac{dy}{dx},x在F和函数y' \frac{\partial F}{\partial y'}-F中不显含。因此,函数y' \frac{\partial F}{\partial y'}-F关于x的偏导数处处为0.

此时,欧拉-拉格朗日方程的第二种形式可进行化简:

因为:\frac{\partial F}{\partial x}=0

\frac{d}{dx}(y'\cdot \frac{\partial F}{\partial y'}-F)=0

两边对x积分有:y'\cdot \frac{\partial F}{\partial y'}-F=C

故对于变量x,函数y' \frac{\partial F}{\partial y'}-F为一个恒定的值,我们设其为积分常数C。换句话来说,y' \frac{\partial F}{\partial y'}-F仅关于y和y'变化,不会根据x变化。

1.4 解决最速降线问题

直接将T = \int_{x_1}^{x_2} \frac{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{ \sqrt{2gy}} dx代入第一种欧拉-拉格朗日方程式:\frac{\partial F}{\partial y} - \frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) = 0       

\frac{\partial F}{\partial y} = \frac{\partial}{\partial y} \left( \frac{\sqrt{1 + (y')^2}}{\sqrt{2gy}} \right) = \frac{\sqrt{1 + (y')^2}}{2 \sqrt{2g} y^{3/2}}

\frac{d}{dx} \left( \frac{\partial F}{\partial y'} \right) = \frac{d}{dx} \left( \frac{y'}{\sqrt{2gy} \sqrt{1 + (y')^2}} \right)

可得:

\frac{\sqrt{1 + (y')^2}}{2 \sqrt{2g} y^{3/2}} - \frac{d}{dx} \left( \frac{y'}{\sqrt{2gy} \sqrt{1 + (y')^2}} \right) = 0

但这并不好解

所以我们用x对F不显式的第二表达式进行求解:

 即:      F - y' \frac{\partial F}{\partial y'} = \frac{\sqrt{1 + (y')^2}}{\sqrt{2g(y_1 - y)}} - \frac{y'^2}{\sqrt{2g(y_1 - y)} \sqrt{1 + (y')^2}}=C

提取公因子 \frac{1}{\sqrt{2g(y_1 - y)}} 后,其分子为:

\sqrt{1 + (y')^2} - \frac{y'^2}{\sqrt{1 + (y')^2}} = \frac{1 + (y')^2 - y'^2}{\sqrt{1 + (y')^2}} = \frac{1}{\sqrt{1 + (y')^2}}

故:

F - y' \frac{\partial F}{\partial y'} = \frac{1}{\sqrt{2gy} \sqrt{1 + (y')^2}}=C

将上式进一步变化:

y\cdot (1 + (y')^2) = \frac{1}{2gC^2}

1 + (y')^2 = \frac{1}{2g C^2}\cdot \frac{1}{y}

可得:

y'=\frac{dy}{dx} = \pm \sqrt{ \frac{1-2gC^2\cdot y}{2gC^2\cdot y}}

得:dx=\pm \sqrt{ \frac{2gC^2\cdot y}{1-2gC^2\cdot y}}dy (8)

上式并不简洁,我们需要用换元法稍加处理:

对于式8中的\sqrt{ \frac{2gC^2\cdot y}{1-2gC^2\cdot y}},令2gC^2\cdot y=\frac{1}{2}(1-cos\theta )

其中:y = \frac{1}{4gC^2} (1-\cos\theta) ,\frac{dy}{d\theta}= \frac{1}{4gC^2} sin\theta

式8中的\sqrt{ \frac{2gC^2\cdot y}{1-2gC^2\cdot y}}化为:

\sqrt{ \frac{\frac{1}{2}(1-cos\theta)}{1-\frac{1}{2}(1-cos\theta)}}=\sqrt{ \frac{\frac{1}{2}-\frac{1}{2}cos\theta}{\frac{1}{2}+\frac{1}{2}cos\theta}}=\sqrt{ \frac{1-cos\theta}{1+cos\theta}}

继续化简:

\sqrt{ \frac{1-cos\theta}{1+cos\theta}}=\sqrt{ \frac{1-cos\theta}{1+cos\theta}}\cdot \sqrt{\frac{1-cos\theta}{1-cos\theta}}=\sqrt{\frac{(1-cos\theta)^2}{(1+cos\theta)(1-cos\theta)}}=\frac{1-cos\theta}{\sqrt{1-cos^2 \theta}}=\frac{1-cos\theta}{sin\theta}

于是式8可写为

dx/d\theta=\pm \frac{1-cos\theta}{sin\theta}dy/d\theta=\pm \frac{1-cos\theta}{sin\theta}\cdot \frac{1}{4gC^2} sin\theta= \frac{1-cos\theta}{4gC^2}  (9)

 对式9两边进行积分得:

                x=\frac{1}{4gC^2}(\theta-sin\theta)+C_2

将起始点(y_1,x_1)(y_2,x_2)带入  x=\frac{1}{4gC^2}(\theta-sin\theta)+C_2y = \frac{1}{4gC^2} (1-\cos\theta)可以组成二元一次方程组,可以解得C, C_2的具体数值。

而这里x、y关于\theta的公式就是“摆线”的表达式,也就是最速降线的解

其中 r =1/4gC^2 是摆线的半径。

摆线的标准表达式为:

x = r (\theta - \sin\theta), \quad y = r (1 - \cos\theta)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值