摘要
在实时目标检测领域,Yolo系列模型一直以其高效和准确而著称。近日,我们成功将Efficient-RepGFPN模块引入YoloV8中,实现了显著的涨点效果。这一改进不仅进一步提升了YoloV8的检测精度,还保留了其原有的高效性能,为实时目标检测领域带来了新的突破。
Efficient-RepGFPN模块是DAMO-YOLO中提出的一种高效重参数化广义特征金字塔网络。它充分借鉴了广义特征金字塔网络(GFPN)的优点,并在此基础上进行了多项创新,以满足实时目标检测的设计要求。通过引入不同尺度特征图具有不同通道维度的设置、移除额外的上采样操作以及结合重参数化机制和高效层聚合网络(ELAN)的连接,Efficient-RepGFPN模块在保持低延迟的同时,实现了高精度的特征融合和信息传递。
将Efficient-RepGFPN模块引入YoloV8后,我们进行了大量的实验验证。结果表明,这一改进使得YoloV8的检测精度得到了显著提升,同时在推理速度上仍然保持了实时性。这一成果得益于Efficient-RepGFPN模块的高效特征融合能力和强大的信息处理能力,使得YoloV8能够更好地应对复杂场景下的目标检测任务。
相比其他目标检测