YoloV8改进策略:Block改进|细节增强注意力模块(DEAB)|即插即用

摘要

一、论文介绍

  • DEA-Net的提出背景:单幅图像去雾是一项具有挑战性的任务,旨在从观测到的雾图中恢复出潜在的清晰图像。传统方法存在局限性,而基于深度学习的方法通过增加卷积的深度或宽度来提高性能,但卷积神经网络(CNN)结构的学习能力仍有待充分探索。
  • DEA-Net的核心目标:提出一种包含细节增强卷积(DEConv)和内容引导注意力(CGA)的细节增强注意力模块(DEAB),以增强特征学习,从而提升去雾性能。

二、创新点

  • 细节增强卷积(DEConv):将先验信息融入普通卷积层,以增强表示和泛化能力。通过重参数化技术,DEConv可以等价地转换为没有额外参数和计算成本的普通卷积。
  • 内容引导注意力(CGA):为每个通道分配独特的空间重要性图(SIM),关注特征中编码的更多有用信息,提高去雾性能。
  • 基于CGA的混合融合方案:有效融合特征并
### 改进YOLO算法性能和效果的方法 #### 1. 使用自研金字塔模块EHSFPN 为了提升YOLO算法的多尺度特征提取能力,可以采用自研金字塔模块EHSFPN(Enhanced Hierarchical Spatial Feature Pyramid Network)。该模块通过多层次融合不同分辨率下的空间信息来增强模型对于目标物体大小变化较大的场景适应性[^1]。 #### 2. 应用细节增强卷积(DEConv)与内容引导注意力(CGA) 针对复杂背景条件下小目标识别困难的问题,可以通过引入由细节增强卷积(DEConv)和支持向量机(SVM)-风格的内容引导注意机制(CGAM)构成的新颖结构——即细节增强注意力(DEAB),从而有效改善网络在处理此类情况时的表现。这种组合不仅能够强化局部纹理的学习,还能依据图像上下文调整权重分布,使得最终输出更加精准可靠[^3]。 #### 3. 实施参数高效的动态卷积(KernelWarehouse) 考虑到传统静态滤波器可能存在的局限性和冗余计算开销,在设计新型架构时可考虑利用KernelWarehouse这一创新方案。此技术旨在通过对基础内核进行高效组装形成大量小型化但功能强大的子单元,并以此为基础构建灵活多变且易于训练的大规模深层神经元连接模式;同时保持较低内存占用率的同时实现优异的速度表现及更高的精度水平[^4]。 ```python import torch.nn as nn class KernelWarehouse(nn.Module): def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1): super().__init__() self.assemble_kernels = ... # 定义如何从少量基底kernel生成更多有效的kernels def forward(self, x): assembled_kernels = self.assemble_kernels() output = F.conv2d(x, weight=assembled_kernels, ...) return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值