YoloV8改进策略:Block改进|C2f模块改进|CDFA,对比驱动特征聚合模块|即插即用,极大增强特征表达!

论文信息

  • 标题: ConDSeg: A General Medical Image Segmentation Framework via Contrast-Driven Feature Enhancement
  • 作者: Mengqi Lei, Haochen Wu, Xinhua Lv, Xin Wang
  • 机构: 中国地质大学(武汉),百度公司
  • 发表时间: 2024年12月11日
  • 会议: AAAI 2025
  • 论文: https://arxiv.org/pdf/2412.08345
  • GitHub链接: https://github.com/Mengqi-Lei/ConDSeg

论文概述

ConDSeg框架旨在解决医学图像分割中的两个主要挑战:前景与背景之间的“软边界”问题,以及医学图像中普遍存在的共现现象。这些问题导致模型在分割时容易产生误判。为此,ConDSeg引入了多种创新模块,以提高分割性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI智韵

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值