超平面(Hyperplane)是支持向量机(SVM)中一个关键概念,特别是在分类任务中。以下是关于超平面的详细解释:
什么是超平面?
在n维空间中,一个超平面是一个(n-1)维的子空间。例如:
- 在二维空间中,超平面是一条直线。
- 在三维空间中,超平面是一个平面。
SVM中的超平面
在SVM中,目标是找到一个将不同类别的样本分开的最优超平面,使得到超平面最近的点(支持向量)的距离最大化,即最大化分类间隔。
最优超平面
分类间隔
分类间隔(Margin)是指超平面与最近的样本点(支持向量)之间的距离。SVM通过最大化这个间隔,找到一个泛化能力更强的分类器。
支持向量
支持向量是指那些位于分类间隔边界上的样本点。这些点对超平面的确定起到关键作用,因为如果移除这些点,超平面的位置将会改变。
非线性可分的数据
对于非线性可分的数据,SVM引入了核函数(Kernel Function),将原始数据映射到高维空间,在高维空间中寻找线性可分的超平面。常用的核函数包括:
- 线性核(Linear Kernel)
- 多项式核(Polynomial Kernel)
- 径向基函数核(RBF Kernel)
- Sigmoid核
软间隔SVM
举例说明
假设我们有一个二维数据集,包括两类样本。我们希望使用线性SVM对其进行分类。
import nump