autoformer之Period-based dependencies

在这里插入图片描述
这段话讨论了基于周期的依赖性,具体来说是在不同周期中的相同相位位置上,自然会产生相似的子过程。这种现象受到随机过程理论的启发。

自相关函数的概念

自相关函数 R X X ( τ ) R_{XX}(\tau) RXX(τ)用来测量一个时间序列 { X t } \{X_t\} {Xt}与其滞后序列 { X t − τ } \{X_{t-\tau}\} {Xtτ}之间的相似性。其公式如下:

R X X ( τ ) = lim ⁡ L → ∞ 1 L ∑ t = 1 L X t X t − τ R_{XX}(\tau) = \lim_{L \to \infty} \frac{1}{L} \sum_{t=1}^{L} X_t X_{t-\tau} RXX(τ)=limLL1t=1LXtXtτ

这个公式表示,当我们有一个长度为 L L L的时间序列时,自相关函数 R X X ( τ ) R_{XX}(\tau) RXX(τ)是这个时间序列与其滞后 τ \tau τ步的时间序列的点积的平均值。

具体数据举例

假设我们有一个时间序列 { X t } \{X_t\} {Xt}如下:

X = [ 1 , 3 , 2 , 4 , 1 , 3 , 2 , 4 , 1 , 3 , 2 , 4 ] X = [1, 3, 2, 4, 1, 3, 2, 4, 1, 3, 2, 4] X=[1,3,2,4,1,3,2,4,1,3,2,4]

我们计算滞后为 τ = 4 \tau = 4 τ=4的自相关函数。为了简单起见,我们假设 L = 12 L = 12 L=12

R X X ( 4 ) = 1 12 ∑ t = 1 12 X t X t − 4 R_{XX}(4) = \frac{1}{12} \sum_{t=1}^{12} X_t X_{t-4} RXX(4)=121t=112XtXt4

这里,我们仅计算 t ≥ 4 t \geq 4 t4的部分:

t = 5 : X 5 ⋅ X 1 = 1 ⋅ 1 = 1 t = 6 : X 6 ⋅ X 2 = 3 ⋅ 3 = 9 t = 7 : X 7 ⋅ X 3 = 2 ⋅ 2 = 4 t = 8 : X 8 ⋅ X 4 = 4 ⋅ 4 = 16 t = 9 : X 9 ⋅ X 5 = 1 ⋅ 1 = 1 t = 10 : X 10 ⋅ X 6 = 3 ⋅ 3 = 9 t = 11 : X 11 ⋅ X 7 = 2 ⋅ 2 = 4 t = 12 : X 12 ⋅ X 8 = 4 ⋅ 4 = 16 \begin{align*} t=5: & \quad X_5 \cdot X_1 = 1 \cdot 1 = 1 \\ t=6: & \quad X_6 \cdot X_2 = 3 \cdot 3 = 9 \\ t=7: & \quad X_7 \cdot X_3 = 2 \cdot 2 = 4 \\ t=8: & \quad X_8 \cdot X_4 = 4 \cdot 4 = 16 \\ t=9: & \quad X_9 \cdot X_5 = 1 \cdot 1 = 1 \\ t=10: & \quad X_{10} \cdot X_6 = 3 \cdot 3 = 9 \\ t=11: & \quad X_{11} \cdot X_7 = 2 \cdot 2 = 4 \\ t=12: & \quad X_{12} \cdot X_8 = 4 \cdot 4 = 16 \\ \end{align*} t=5:t=6:t=7:t=8:t=9:t=10:t=11:t=12:X5X1=11=1X6X2=33=9X7X3=22=4X8X4=44=16X9X5=11=1X10X6=33=9X11X7=22=4X12X8=44=16

因此,

R X X ( 4 ) = 1 12 ( 1 + 9 + 4 + 16 + 1 + 9 + 4 + 16 ) = 60 12 = 5 R_{XX}(4) = \frac{1}{12} (1 + 9 + 4 + 16 + 1 + 9 + 4 + 16) = \frac{60}{12} = 5 RXX(4)=121(1+9+4+16+1+9+4+16)=1260=5

这个自相关函数 R X X ( 4 ) R_{XX}(4) RXX(4)反映了序列 { X t } \{X_t\} {Xt}和其滞后序列 { X t − 4 } \{X_{t-4}\} {Xt4}之间的相似性。高自相关值表示序列在滞后 τ \tau τ时具有很强的周期性。

选择最可能的周期长度

我们可以计算不同滞后值 τ \tau τ的自相关函数,然后选择自相关值最高的 k k k个滞后值作为最可能的周期长度 τ 1 , τ 2 , … , τ k \tau_1, \tau_2, \ldots, \tau_k τ1,τ2,,τk

假设我们计算了滞后为 1 到 8 的自相关函数值,并得到如下结果:

R X X ( 1 ) = 0.5 R X X ( 2 ) = 1.2 R X X ( 3 ) = 0.8 R X X ( 4 ) = 5.0 R X X ( 5 ) = 0.4 R X X ( 6 ) = 1.0 R X X ( 7 ) = 0.3 R X X ( 8 ) = 4.5 \begin{align*} R_{XX}(1) &= 0.5 \\ R_{XX}(2) &= 1.2 \\ R_{XX}(3) &= 0.8 \\ R_{XX}(4) &= 5.0 \\ R_{XX}(5) &= 0.4 \\ R_{XX}(6) &= 1.0 \\ R_{XX}(7) &= 0.3 \\ R_{XX}(8) &= 4.5 \\ \end{align*} RXX(1)RXX(2)RXX(3)RXX(4)RXX(5)RXX(6)RXX(7)RXX(8)=0.5=1.2=0.8=5.0=0.4=1.0=0.3=4.5

我们可以看到滞后 τ = 4 \tau = 4 τ=4 τ = 8 \tau = 8 τ=8的自相关值最高,因此我们可以选择这些滞后值作为最可能的周期长度。

基于周期的依赖性

基于上述估计的周期长度,我们可以推导出基于周期的依赖性,并且可以根据相应的自相关函数对其进行加权。换句话说,周期长度 τ 1 , τ 2 , … , τ k \tau_1, \tau_2, \ldots, \tau_k τ1,τ2,,τk可以用于构建时间序列的依赖模型,这些模型能够捕捉时间序列中的周期性结构,并对其进行加权,以反映每个周期的相对重要性。

结论

通过识别和利用时间序列中的周期性结构,我们可以更准确地理解数据的内在模式和规律。自相关函数为我们提供了一种有效的方法来识别这些周期性结构,并为基于周期的依赖模型提供了基础。

  • 25
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值