PCL 删除点云中重叠的点(方法三)

一、概述

  利用对点云中的每个点设置标志位,一次遍历即可去除重复点

1.1 原理

  删除点云中重叠的点通常是为了提高模型的精度和可视化效果,特别是在处理高密度、密集分布的点云数据时。这一步骤称为“去重”或“简化”。以下是几种常见的方法:

  1. 基于距离的剔除:设置一个阈值,如果两个点之间的欧氏距离小于这个阈值,就认为它们可能是重复的,并移除其中一个。
  2. RANSAC算法:随机采样一致性(Random Sample Consensus)可以在三维空间中找到最大概率的非奇异解,通过一系列迭代剔除疑似错误的点。
  3. DBSCAN聚类:Density-Based Spatial Clustering of Applications with Noise (DBSCAN)可以识别出核心点周围的稠密区域,将它们合并成单个点,而边缘或噪声点则删除。
  4. 逐渐细化的方法:从粗到细逐层去除点,如VoxelGrid或Octree等,只保留每个网格单元的中心点或最近的一个点。
  5. 使用云图分水岭算法:这是一种基于图像处理的技术,将
pcl库(Point Cloud Library)是一个用于点云处理的开源库,提供了丰富的点云处理算法。要快速删除点云重叠,可以通过以下步骤实现。 首先,加载点云数据并创建一个新的点云对象,用于存储去除重叠后的结果。接着,遍历原始点云中的每个,将其坐标转换为字符串,并以此作为键值存储到一个哈希表中。这样可以将相同坐标的合并为一个键,并且快速检查是否存在重叠。 在遍历原始点云时,检查哈希表中是否存在相同坐标的。如果存在,则表明该重叠,不需要添加到新的点云对象中。如果不存在,则将该添加到新的点云对象中。 最后,保存新的点云对象并释放资源。 下面是示例代码: ```cpp #include <pcl/io/pcd_io.h> #include <pcl/point_cloud.h> #include <pcl/point_types.h> #include <unordered_map> typedef pcl::PointXYZ PointT; typedef pcl::PointCloud<PointT> PointCloudT; int main() { // 加载点云数据 PointCloudT::Ptr cloud(new PointCloudT); pcl::io::loadPCDFile("input_cloud.pcd", *cloud); // 创建新的点云对象 PointCloudT::Ptr filtered_cloud(new PointCloudT); // 哈希表存储点云坐标 std::unordered_map<std::string, size_t> hash_table; // 遍历原始点云 for (size_t i = 0; i < cloud->points.size(); ++i) { // 将点云坐标转换为字符串 std::string key = std::to_string(cloud->points[i].x) + "," + std::to_string(cloud->points[i].y) + "," + std::to_string(cloud->points[i].z); // 检查是否存在重叠 if (hash_table.count(key) == 0) { // 不存在重叠,添加到新的点云对象中 filtered_cloud->points.push_back(cloud->points[i]); // 添加到哈希表 hash_table[key] = i; } } // 保存新的点云结果 pcl::io::savePCDFile("filtered_cloud.pcd", *filtered_cloud); return 0; } ``` 通过以上步骤,可以快速删除点云中的重叠,得到没有重叠点云结果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值