2020年中国科学技术大学《计算机图形学》本科课程笔记:Day2

# 课程三:参数曲线拟合

  • 多变量函数(多元函数):f:R^{m}\rightarrow R^{1}  
  • 二元函数的基函数构造方法:张量积形式,即用两个一元函数的基函数的相互乘积来定义

三次张量积多项式:(选取不高于3次的项)

  •  张量积函数(不限于幂函数时)
  • 多元函数的张量积定义优点:定义简单,多个一元基函数的乘积形式;
  • 多元函数的张量积定义缺点:随着维度的增加,基函数个数急剧增加,导致变量急剧增加(求解系统规模急剧增加,求解代价大)
  • 解决办法:多元函数的神经网络表达,用一个单变量函数\sigma (x)(称为激活函数)的不同仿射变换来构造“基函数”,使得基函数数目可控(节点数m要调节适当,不然多了过拟合,少了欠拟合),而神经网络深度越深能够让基函数数据的分布越来越散(广度大)从而使得更容易拟合好函数;
  • 向量值函数:f:R^{1}\rightarrow R ^{m}  ,可看成x映射到了高维空间,空间的每一维均为一个x的函数,且各个函数独立无关(一般共享基函数):
  • 向量值函数的几何解释:

  • 特例:平面参数曲线

  • 特例:空间参数曲线​​

  • 特例:参数曲面(流形:只是在三维中薄薄的一层,本质是2维平面映射上去的,即3维中的流形曲面本征维度为2维,只不过在3维中呈现出来.流形任何一个点的无穷小的区域等价于平面上的一个圆盘)
  •  特例:二维映射(可看成z始终为0 的特殊曲面)
  • 特例:三维映射
  • 特例:降维映射(低维投影)(启发:如果AuotEncoder的中间层维度甚至小于本质维度,那么是不可能重建出原来的全部信息的,如人脸人们推测本质维度为64-128,可将中间维度设置为64或128,小于64结果会很差)
  • 总结:
  • 拟合问题与参数化问题的关系:

 1、曲线拟合问题为下图,其中t_{i}为参数

2、参数化问题,即找到高维数据的低维本征参数(_{}t_{i}),如下图:

  •  曲线参数化方法:1、均匀参数化(固定开头点和尾部点的值,然后按中间点数均匀分配,并不考虑数据点的几何关系)2、弦长参数化(先求出总弦长,再按每个数据点距离第一个点的弦长比例分配每个点的位置)3、中心参数化;4、拟音参数化
  • 曲面参数化:
  • 参数化的应用:1、地图绘制(地理学)2、纹理隐射 3、

 

 

 # 课程四:三次样条函数

  • 样条曲线=分段三次函数;
  • 三次样条函数推导方法:
  •  三次基样条求解方法:
  •  样条函数的局限性:1、须有小扰度假定;2、不能处理多值问题;3、不能很好表达空间曲线;4、不能有坐标不变性(几何不变性)
  • 解决办法:三次样条曲线
  •  参数连续性(C^{-1}表示不连续)
  •  参数连续性的不足:参数连续性过于严格,会使得在几何设计中不太直观;(例子:一条直线,有时某一点的左导数右导数不相等有时又相等,原因:连续性依赖于参数的选择,同一条曲线,参数不同,连续阶也不同)
  • 几何连续性:与参数选择无关
  • 几何连续性的具体形式:
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值