Pointnet++改进优化器系列:全网首发Sophia优化器 |即插即用,实现有效涨点

文章介绍了Sophia优化器,一种针对深度学习的二阶裁剪随机优化器,尤其适用于3D点云处理。通过轻量级的对角线Hessian估计,实现梯度更新的有效控制,减少了训练时间和计算成本。相比Adam,Sophia在多个大型模型实验中表现出更快的收敛速度和更优的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介:
1.该教程提供大量的首发改进的方式,降低上手难度,多种结构改进,助力寻找创新点!
2.本篇文章对Pointnet++特征提取模块进行改进,加入
Sophia优化器,提升性能。
3.专栏持续更新,紧随最新的研究内容。

目录

1.理论介绍

2.修改步骤

2.1 步骤一

         2.2 步骤二

         2.3 步骤三


1.理论介绍

考虑到语言模型预训练的巨大成本,对优化算法进行重大改进将大大减少训练的时间和成本。Adam及其变体多年来一直是最先进的,而更复杂的二阶(基于hessian的)优化器通常会导致过多的每一步开销。在本文中,我们提出了索菲亚,二阶裁剪随机优化,一个简单的可扩展的二阶优化器,它使用对角线Hessian的轻量级估计作为前置条件。更新是梯度的移动平均值除以估计的Hessian的移动平均值,然后是元素裁

Sophia优化器是一种新的模型预训练优化器,它是一种轻量级二阶优化器,使用Hessian对角线的廉价随机估计作为预调节器,并通过限幅机制来控制最坏情况下的更新大小。在GPT-2等预训练语言模型上,Sophia以比Adam少了50%的步骤,且实现了相同的预训练损失。\[1\] YOLO是一种目标检测算法,而Yolov8魔术师是一篇关于Yolov8的专栏文章,提供了每一步步骤和源码,帮助读者轻松上手魔改网络。通过阅读这篇专栏文章,读者可以了解如何在Yolov8中进行网络的魔改,包括在不同位置(Backbone、head、detect、loss等)进行创新和改进。\[3\] #### 引用[.reference_title] - *1* *2* [首发Yolov8优化:Adam该换了!斯坦福最新Sophia优化器,比Adam快2倍 | 2023.5月斯坦福最新成果](https://blog.csdn.net/m0_63774211/article/details/130912702)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [《YOLOv8魔术师》专栏介绍 & CSDN独家改进创新实战&专栏目录](https://blog.csdn.net/m0_63774211/article/details/131519223)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AICurator

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值