READ-2334 Detecting and mitigating poisoning attacks in federated learning using generative adversar

论文名称Detecting and mitigating poisoning attacks in federated learning using generative adversarial networks
作者Ying Zhao, Junjun Chen, Jiale Zhang, Di Wu, M. Blumenstein, Shui Yu
来源Concurrency and Computation 2020
领域Machine Learning - Federal learning - Security – Targeted & label-flipping poisoning attack
问题已有的基于服务器辅助验证集的防御算法,如果验证集中不包含投毒攻击目标类别的数据,就不能用于识别投毒攻击
方法使用生成对抗网络生成审计数据,通过审计数据来评估客户端模型的准确性,从而去除攻击者

阅读记录

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


总结

针对标签翻转攻击:

  • 恶意客户端模型会对特定的输入样本进行错误的分类,并且使用缩放攻击后恶意模型的准确性将变得更低,因此可以通过审计客户端模型的准确性来进行防御。但是,如果辅助数据集中不包含发起攻击的目标样本,则无法体现恶意模型的恶意性,无法用于审计。
  • 10
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在卫星时间序列数据中检测变点、趋势和季节性是一项重要的任务。卫星时间序列数据是通过卫星观测到的地球表面上的连续观测数据。这些数据可以用于监测和分析地球表面的变化,如气象、土地利用和植被覆盖等。 首先,检测变点是指在时间序列中找到突变或结构转变的点。变点可能代表了不同的影响因素引起的突变,例如自然事件、人为活动或仪器故障等。通过分析时间序列数据的变化趋势,可以使用一些统计方法来检测这些变点。 其次,趋势是指时间序列数据中长期的变化方式。有时,卫星时间序列数据中的变化可能会逐渐增长或减少,这可以被称为趋势。通过对时间序列数据进行回归分析或移动平均处理,我们可以检测和评估这种趋势。 季节性是指在一年内周期性的重复出现的模式。例如,地表温度通常会因季节变化而发生变化,夏季温度高,冬季温度低。对于卫星时间序列数据,我们可以通过分析数据的周期性变化来检测季节性。一种常用的方法是使用季节分解技术,如STL分解,将时间序列分解成长期趋势、季节变化和随机噪声部分。 通过检测卫星时间序列数据中的变点、趋势和季节性,我们可以更好地理解地球表面的变化,并为环境监测和资源管理提供更准确的信息。这些分析结果可以用于研究气候变化、土地利用变化、植被变化等,以及评估其对环境和人类社会的影响。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值