PDGAN: A Novel Poisoning Defense Method in Federated Learning Using Generative Adversarial Network笔记

前言

论文 “PDGAN: A Novel Poisoning Defense Method in Federated Learning Using Generative Adversarial Network” 的阅读笔记,本博客总结了其最主要的内容。

阅读前提:对联邦学习(federated learning)和生成对抗网络(generative adversarial network)有一定的了解。


论文相关信息

  1. 标题
    PDGAN: A Novel Poisoning Defense Method in Federated Learning Using Generative Adversarial Network
  2. 出处和年份
出处年份
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)2020
  1. 论文作者及其工作单位
作者工作单位
Zhao, Ying Chen, Junjun Zhang, Jiale Wu, Di Teng, Jian Yu, Shui

关键词

Federated learning · Poisoning defense · Generative adversarial network

概述

一种针对于联邦学习中投毒攻击的防御方法

论文研究的问题及其意义

研究的问题该研究的意义
在联邦学习中,攻击者可以使用投毒攻击让服务器的全局模型对某中类别的样本失效可以发现哪些个服务端是攻击者,从而忽略它们上传的参数达到防御目的

现有方法及其优缺点

方法优点缺点文献
Secure multiparty computation and homomorphic additive cryptosystemintroduce huge computa- tion overhead to the participants and may bring a negative effect on model accu- racy[10–12]
Byzantine-tolerant machine learning methods[13,14]
anomaly detection techniques
k-means and clustering: to check the participants’ updates across communication rounds and remove the outliers[9,15,16]
cosine similarityand gradients norm detection[17,18]

上述各种方法在联邦学习框架下的效果都不好,因为各客户端的训练数据是非独立同分布的,这导致了各客户端上传的更新彼此之间是非常不同的。

论文的思路和方法及其优缺点

思路和方法优点缺点
由于不知道各客户端的数据,所以在服务器设置一个GAN来产生一个测试数据集,利用各客户端本地模型在此数据集上的打分来判断哪个客户端是攻击者。预先设定一个阈值,打分低于这个阈值的客户端被视为攻击者,在以后的训练当中忽视它上传的更新。
  1. PDGAN 的框架

(1) G : G: G:产生fake data

在这里插入图片描述

(2) D : D: D: 服务器的全局模型作为discriminator,对 G G G产生的fake data进行判别

论文使用的数据集和实验工具

数据集实验工具源码
MNIST,Fashion-MNIST语言框架:PyTorch,
硬软件设备:Intel Xeon W-2133 3.6 GHz CPU, Nvidia Quadro P5000 GPU with 16G RAM and RHEL7.5 OS

论文的实验方法

  1. 设立了两种情形:
    (1) 1 attacker, 9 benign pariticipants, totally10 participants
    (2) 3 attackers, 9 benign pariticipents, totally 10 participants
  2. 训练数据随机分配给10个participants
  3. 攻击任务
    (1) 对于 M N I S T MNIST MNIST数据集:使全局模型对标签1判定为标签7
    (2) 对于 F a s h i o n − M N I S T Fashion-MNIST FashionMNIST数据集:使全局模型对标签T-shirt判定为标签Pullover
  4. 模型的评价标准
    (1) poisoning accuracy: 将投毒样本分类为攻击者设定的类别的成功率
    (2) overall accuracy: 对所有样本正确分类的成功率
    有个问题,攻击者要让服务器将1判别为7,正确分类是说服务器仍将1分类为1,还说将1分类为7也是“正确判别”?
  5. 数据重构
    (1) M N I S T : MNIST: MNIST: 经过大概400轮的迭代,可以产生较为清晰的fake data,可以用来对每个客户端进行评测从而确定哪一个是投毒攻击者。
    服务器端的auxiliary data包括标签为0和4的数据,用于喂入discriminator。

(2) F a s h i o n − M N I S T : Fashion-MNIST: FashionMNIST: 经过大概600轮的迭代,可以产生较为清晰的fake data,可以用来对每个客户端进行评测从而确定哪一个是投毒攻击者。
服务器端的auxiliary data包括标签为dress、coat和sandal的数据,用于喂入discriminator。

  1. 服务器端开始检测攻击者的时机
    (1) M N I S T MNIST MNIST数据集:实验设置服务器经过400的迭代后,将generator产生的fake data用于检测投毒攻击者
    (2) F a s h i o n − M N I S T Fashion-MNIST FashionMNIST数据集:实验设置服务器经过600的迭代后,将generator产生的fake data用于检测投毒攻击者

实验结果

  1. 对于 M N I S T MNIST MNIST数据集,400轮迭代后,服务器端开始使用generator产生的fake data来检测攻击者,可以看到攻击者的攻击效果迅速降低(poisoning accurac迅速降低到3.1%)。对于 F a s h i o n − M N I S T Fashion-MNIST FashionMNIST数据集,则是从600迭代后开始检测攻击者。
  2. 3个attacker的攻击效果更好(posioning accuracy上升得更快)。
  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论
对比学习是一种无监督学习方法,可以通过比较不同样本之间的相似性来学习有用的特征表示。然而,当对比学习面临中毒和后门问题时,其可靠性和安全性可能受到威胁。 中毒问题是指攻击者有意干扰对比学习过程,通过操纵训练数据,向模型注入有害样本或扰乱样本分布,从而导致模型学到错误的特征表示。攻击者可能会做出一些更改,使得恶意样本被错误地分类为正常样本,从而影响模型的性能和准确性。对于对比学习而言,中毒问题可能导致模型受到严重破坏,无法提供有用的特征表示。 后门问题是指攻击者利用对比学习模型的弱点,在模型中插入恶意后门,从而在特定条件下触发模型的恶意行为。后门可以是一些隐藏的规则、特定输入模式或触发事件,只有在满足这些条件时,模型才会展现出恶意行为。对于对比学习而言,后门问题可能会导致模型不可靠,攻击者可以通过触发后门来操纵模型的预测结果,造成严重的安全隐患。 为了解决中毒和后门问题,一些防御机制已经被提出。例如,数据审核和清洗可以用于检测和过滤中毒样本,以确保模型被训练在干净和合理的数据上。而对于后门问题,模型的验证和测试阶段需要对模型进行全面检查,以查找是否存在后门。此外,对比学习模型的设计需要考虑到对抗示例和恶意样本的鲁棒性,以提高模型的安全性。 总而言之,中毒和后门是对比学习中的两个关键问题,它们可能会对模型的可靠性和安全性造成威胁。通过合适的防御机制和模型设计,可以有效地应对这些问题,并提高对比学习的实用性和安全性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫咪钓鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值