READ-2354 FLCert: Provably Secure Federated Learning Against Poisoning Attacks

本文提出FLCert,一种在联邦学习中对抗投毒攻击的证明安全防御方法,通过多组全局模型训练和预测,但面临性能损失。研究强调了现有防御的局限性和未来挑战,如如何平衡安全与效率及利用任务先验知识提升认证水平。
摘要由CSDN通过智能技术生成
论文名称FLCert: Provably Secure Federated Learning Against Poisoning Attacks
作者Xiaoyu Cao; Zaixi Zhang; Jinyuan Jia; Neil Zhenqiang Gong
来源IEEE T INF FOREN SEC 2022
领域Machine Learning - Federal learning - Security – poisoning attack
问题已有防御没有对投毒攻击给出可证明的安全保证,并且容易受到更高级的攻击
方法将客户端分成组,使用任何现有的联邦学习方法为每组客户端学习一个全局模型,并在全局模型中使用多数票作为测试输入的预测

阅读记录

在这里插入图片描述
在这里插入图片描述


总结

本文提出了可认证的安全防御方法,通过多全局模型的模式进行训练与预测。

  1. 问题
    由于分组的作用,该方法对模型性能存在一定损失,没有达到保真度的要求
  2. 启示
    (1)联邦学习安全防御技术中存在的挑战之一:已有的防御方法没有对投毒攻击给出可证明的安全保证
    (2)如何充分利用客户端数据建立多个全局模型,同时不增加客户端计算开销是一个有趣的问题
  3. 未来
    在推导认证安全级别时,FLCert没有利用任何关于学习任务或基本FL算法的先验知识。 在推导经认证的安全保证时涉及这样的先验知识是一个有趣的未来工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值