论文名称 | FLCert: Provably Secure Federated Learning Against Poisoning Attacks |
---|---|
作者 | Xiaoyu Cao; Zaixi Zhang; Jinyuan Jia; Neil Zhenqiang Gong |
来源 | IEEE T INF FOREN SEC 2022 |
领域 | Machine Learning - Federal learning - Security – poisoning attack |
问题 | 已有防御没有对投毒攻击给出可证明的安全保证,并且容易受到更高级的攻击 |
方法 | 将客户端分成组,使用任何现有的联邦学习方法为每组客户端学习一个全局模型,并在全局模型中使用多数票作为测试输入的预测 |
阅读记录
总结
本文提出了可认证的安全防御方法,通过多全局模型的模式进