论文名称 | FLCert: Provably Secure Federated Learning Against Poisoning Attacks |
---|---|
作者 | Xiaoyu Cao; Zaixi Zhang; Jinyuan Jia; Neil Zhenqiang Gong |
来源 | IEEE T INF FOREN SEC 2022 |
领域 | Machine Learning - Federal learning - Security – poisoning attack |
问题 | 已有防御没有对投毒攻击给出可证明的安全保证,并且容易受到更高级的攻击 |
方法 | 将客户端分成组,使用任何现有的联邦学习方法为每组客户端学习一个全局模型,并在全局模型中使用多数票作为测试输入的预测 |
阅读记录
总结
本文提出了可认证的安全防御方法,通过多全局模型的模式进行训练与预测。
- 问题
由于分组的作用,该方法对模型性能存在一定损失,没有达到保真度的要求 - 启示
(1)联邦学习安全防御技术中存在的挑战之一:已有的防御方法没有对投毒攻击给出可证明的安全保证
(2)如何充分利用客户端数据建立多个全局模型,同时不增加客户端计算开销是一个有趣的问题 - 未来
在推导认证安全级别时,FLCert没有利用任何关于学习任务或基本FL算法的先验知识。 在推导经认证的安全保证时涉及这样的先验知识是一个有趣的未来工作。