READ-2354 FLCert: Provably Secure Federated Learning Against Poisoning Attacks

本文提出FLCert,一种在联邦学习中对抗投毒攻击的证明安全防御方法,通过多组全局模型训练和预测,但面临性能损失。研究强调了现有防御的局限性和未来挑战,如如何平衡安全与效率及利用任务先验知识提升认证水平。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文名称 FLCert: Provably Secure Federated Learning Against Poisoning Attacks
作者 Xiaoyu Cao; Zaixi Zhang; Jinyuan Jia; Neil Zhenqiang Gong
来源 IEEE T INF FOREN SEC 2022
领域 Machine Learning - Federal learning - Security – poisoning attack
问题 已有防御没有对投毒攻击给出可证明的安全保证,并且容易受到更高级的攻击
方法 将客户端分成组,使用任何现有的联邦学习方法为每组客户端学习一个全局模型,并在全局模型中使用多数票作为测试输入的预测

阅读记录

在这里插入图片描述
在这里插入图片描述


总结

本文提出了可认证的安全防御方法,通过多全局模型的模式进

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值