事件相机的一些思路

本文探讨了事件相机与传统相机结合解决运动模糊及黑暗环境视觉问题的可能性。点过程信号处理、点云网络结构和时序记忆模型被提出作为关键研究方向,以挖掘异步时空脉冲信号的优势。此外,还提到了将脉冲信号视为图模型节点的处理方法。
摘要由CSDN通过智能技术生成

本文仅仅是记录自己对事件相机的浅显的想法

1.事件相机与传统相机结合也许可以解决传统相机运动模糊的问题,将运动模糊的图片还原为清晰的图片

2.事件相机解决黑暗环境下的视觉问题

 异步时空脉冲信号分析与处理存在这么几个探索的方向:

1、异步时空脉冲信号在数据分布上可描述为时空点过程[65],可引入点过程信号处理、学习与推理理论[66-67];

(2)异步时空脉冲信号在时空结构上与点云相似,可利用深度学习在点云网络的结构与方法。这两年目标检测领域也有很多利用点云结构进行3d目标检测的网络,是一个热门趋势。

(3)将脉冲信号视为图模型的节点,可采用图模型信号处理与学习理论;

(4)异步时空脉冲信号的高时间分辨率具有时序优势,可以挖掘时序记忆模型[55,73]和借鉴类脑视觉信号处理机理

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值