一.概述
本片论文主要提出了一个事件相机的3D人体姿态的数据集,可用于做人体姿态估计
数据集地址:https://sites.google.com/view/dhp19/user-guide
该数据集使用4个不同位置的事件相机,每个不同位置的事件相机的输出均被记录,同时使用运动捕捉系统得到人体运动的真实姿态。3D 坐标是从 Vicon 中提取的,而 2D 坐标是手动标记的。 3D 坐标是从 Vicon 中提取的,而 2D 坐标是手动标记的。 3D 坐标是从 Vicon 摄像机中提取的,而 2D 坐标是手动标记的。
二.model
论文提出了一个姿态估计的模型
方法比较简单,属于2D to 3D的方法,预测2D时使用CNN,预测3D的时候使用的是两个相机进行三角测量得到,没有用到学习的方法。
三.缺点
姿态缺失的情况较为严重,不动的时候事件相机无法输出事件,造成了一部分的运动缺失,文中说可以通过下面的方法改进:
只有当每个关节的置信