Associative Embedding: End-to-End Learning forJoint Detection and Grouping论文笔记

一.介绍

在进行多人姿态估计的bottom-top方法时,一个直观的想法是能不能得到一个表示归属的标签,类似id,同一个人的不同点都应该是同一个标签值。但是我们无法预知输入中可能会出现几个人,而且也不能预先指定具体的标签值。为了将不同的人区分开,要怎么做呢?可以看成聚类任务,即同一个人的不同关节点的 id 值应当接近(也就是接近他们的均值),不同人之间的点的 id 值尽量远离(也就是不同人的 id 均值尽量距离远),这就是本文的思路。

本文提出了一种表示联合检测和分组输出的新方法--联想嵌入。其基本思想是为每一种检测引入一个实数, 作为 "标记" 来标识检测所属的组。换句话说, 标记将每个检测与同一组中的其他检测相关联。

embedding:可以理解为将高维的向量通过一种特定的方式(映射)变成一个低维的向量,这个低维向量包含着高维向量的信息,本文是使用一维的embedding。

具体讲解下面这篇文章讲的很清楚,结合论文来看很容易就能看懂本文的思路

[论文精读翻译]Associative Embedding: End-to-End Learning for Joint Detection and Grouping_xiaolouhan的博客-CSDN博客关联嵌入:联合检测和分组的端到端学习Alejandro Newell, Zhiao Huang, Jia Deng参考文献https://simochen.github.io/2017/12/25/associative-embedding/摘要本文介绍了一种用于检测和分组任务的监督卷积神经网络方法--联合嵌入associative embedding。以这种方式可...https://blog.csdn.net/xiaolouhan/article/details/90200024

二.结构

 上图比较清楚的可以了解到是如何进行匹配的,其中y轴表示身体关节的类别,x轴表示指定的嵌入。

为了生成最终的预测,我们逐个迭代每个关节。首先考虑头部和躯干周围的关节,然后逐渐移动到四肢,从而确定顺序。我们使用来自第一个关节(例如颈部)的检测来形成我们最初检测到的人群。然后,考虑到下一个关节,比如说左肩,我们必须找出如何将其检测结果与当前人群进行最佳匹配。每个检测由其分数和嵌入标记定义,每个人由其当前关节的平均嵌入定义。

三.总结

本文的实验得到:关键点检测是网络的主要瓶颈, 而网络已经学会了产生高质量的分组。

所以多人姿态估计的bottom-top方法的重点还是在于如何提高关节点检测的准确率,本质上的方面应该是如何提高小目标检测的准确率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值