Associative Embedding: End-to-End Learning forJoint Detection and Grouping论文笔记

一.介绍

在进行多人姿态估计的bottom-top方法时,一个直观的想法是能不能得到一个表示归属的标签,类似id,同一个人的不同点都应该是同一个标签值。但是我们无法预知输入中可能会出现几个人,而且也不能预先指定具体的标签值。为了将不同的人区分开,要怎么做呢?可以看成聚类任务,即同一个人的不同关节点的 id 值应当接近(也就是接近他们的均值),不同人之间的点的 id 值尽量远离(也就是不同人的 id 均值尽量距离远),这就是本文的思路。

本文提出了一种表示联合检测和分组输出的新方法--联想嵌入。其基本思想是为每一种检测引入一个实数, 作为 "标记" 来标识检测所属的组。换句话说, 标记将每个检测与同一组中的其他检测相关联。

embedding:可以理解为将高维的向量通过一种特定的方式(映射)变成一个低维的向量,这个低维向量包含着高维向量的信息,本文是使用一维的embedding。

具体讲解下面这篇文章讲的很清楚,结合论文来看很容易就能看懂本文的思路

[论文精读翻译]Associative Embedding: End-to-End Learning for Joint Detection and Grouping_xiaolouhan的博客-CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值