[联邦学习]FedProx算法&&工作原理&&步骤

[联邦学习]FedProx

FedProx(Federalized Proximal Algorithm)是一种在联邦学习(Federated Learning, FL)环境下设计的优化算法,旨在处理数据在不同客户端之间可能存在的不均匀分布(Non-IID Data)的问题。联邦学习是一种机器学习设置,允许多个客户端协作训练一个共享的模型,同时保持数据的隐私和安全,因为数据不需要集中存储或处理。

FedProx是Li Tian等人于2018年(论文链接)所提出的一种针对系统异构性鲁棒的联邦优化算法,发表于MLSys 2020上。它相较于FedAvg主要做出了两点改进:

采样阶段 使用了按数据集大小比例,可放回采样,并直接平均聚合(无加权)来获得无偏梯度估计
本地训练阶段 基于近端项优化的思路,魔改了本地训练的目标函数为

L + μ 2 ∣ ∣ w k , i t − w g l o b a l ∣ ∣ 2 L + \frac{\mu}{2}||w^t_{k,i} - w_{global}||^2 L+2μ∣∣wk,itwglobal2

"采样"指的是服务器从参与方(客户端)的数据集中选择样本进行模型更新。因此,在FedProx中,采样是服务器在每轮迭代中从参与方的数据集中按照每个参与方数据集大小的比例进行选择的过程。具体来说,如果某个参与方的数据集更大,则它在采样中被选中的概率更高。

因此,这里的"采样"是指服务器在联邦学习中选择参与方的过程,而不是指参与方选择自己的数据的过程。

背景和问题

在标准的联邦学习模型中,如FedAvg(Federated Averaging),每个客户端独立地在本地数据上训练模型,然后将更新的模型发送给中央服务器。服务器将这些更新平均合并,以更新全局模型。然而,当不同客户端的数据分布差异很大时(即Non-IID),这种简单的平均可能导致模型性能下降,因为它没有考虑到各客户端更新的差异性。

FedProx的工作原理

FedProx在FedAvg的基础上增加了一个正则化项,这个正则化项惩罚模型参数与全局模型参数之间的偏差。具体来说,FedProx的目标是最小化以下目标函数:

L ( w ) = ∑ k = 1 K n k n ( F k ( w ) + μ 2 ∣ w − w t ∣ 2 ) L(w) = \sum_{k=1}^K \frac{n_k}{n} \left( F_k(w) + \frac{\mu}{2} |w - w^t|^2 \right) L(

### 关于 FedProx 算法的学术论文 FedProx 是一种改进版的联邦学习算法,旨在解决传统联邦平均 (FedAvg) 方法中存在的异构数据分布问题。通过引入一个正则化项来约束本地更新的方向和幅度,使得模型能够在更广泛的设备上收敛得更好。 #### 论文推荐: 1. **Federated Optimization in Heterogeneous Networks** 这篇论文首次提出了 FedProx 算法的概念并对其进行了详细的理论分析。研究指出,在非独立同分布的数据集下,标准的 FedAvg 可能会遇到严重的性能下降问题;而 FedProx 则可以通过调整局部目标函数中的参数 μ 来缓解这一现象[^1]。 2. **On the Convergence of Federated Optimization with Proximal Regularization** 文章深入探讨了带有近端正则化的分布式优化方法——即 FedProx 的收敛性质。作者证明了即使在网络拓扑结构复杂的情况下,只要适当选择超参μ,该算法依然能够保持良好的泛化能力[^2]。 3. **Personalized Federated Learning via Local Model Adaptation** 此文献讨论如何利用 FedProx 实现个性化联邦学习。文中提到的方法允许每个客户端根据自身的数据特点自适应地修改全局模型,从而提高整体系统的效率与效果[^3]。 ```python # Python 代码示例:模拟简单的 FedProx 更新过程 def fedprox_update(local_model, global_model, mu=0.1): """ 执行一次 FedProx 更新 参数: local_model (dict): 当前节点上的局部模型权重字典 global_model (dict): 全局共享模型权重字典 mu (float): 控制正则强度的系数,默认值为 0.1 返回: updated_params (dict): 经过 FedProx 调整后的新的局部模型权重 """ # 初始化返回的结果变量 updated_params = {} for key in local_model.keys(): # 应用 FedProx 特有的正则化公式 diff = local_model[key] - global_model[key] penalty_term = mu * diff updated_params[key] = local_model[key] - penalty_term return updated_params ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值