基于深度学习的夜视行人检测系统:使用YOLOv10、UI界面及自定义数据集的实现

一、引言

行人检测是计算机视觉中的一项重要任务,广泛应用于自动驾驶、智能监控、安防系统等领域。尤其是在夜间行人检测的场景中,由于光线条件差、物体对比度低,检测难度更大。传统的基于特征的检测方法容易受到环境光线的干扰,表现出较低的精度。而随着深度学习技术的发展,基于卷积神经网络(CNN)的目标检测算法在此类任务上表现出了显著优势。

YOLO(You Only Look Once)系列模型是目前最主流的目标检测方法之一,具有高效的实时检测能力。最新版本的YOLOv10结合了多个改进策略,在提高检测速度的同时,提升了小目标检测和复杂场景下的精度。因此,基于YOLOv10的夜视行人检测系统可以很好地适应低光照条件下的行人检测任务,适合用于自动驾驶和监控场景。

本文将详细介绍如何构建一个基于深度学习的夜视行人检测系统,使用YOLOv10模型、自定义的夜视行人数据集以及开发基于PyQt5的UI界面,支持用户通过图像或视频流实现实时行人检测。

目录

一、引言

二、YOLOv10 概述

三、系统设计

系统架构图

四、数据集准备

4.1 数据集来源

4.2 数据标注

4.3 数据集结构

五、YOLOv10 模型训练

5.1 环境配置

5.2 准备YOLOv10

5.3 配置YOLOv10

5.4 模型训练

5.5 模型调优

六、UI界面开发

6.1 安装PyQt5

6.2 UI界面代码

6.3 UI界面功能说明

七、总结


二、YOLOv10 概述

YOLOv10 是 YOLO 系列模型的最新版本,它结合了深度学习领域的最新技术改进,能够有效地检测图像中的多个目标,并且计算效率极高。与其他目标检测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值