一、引言
行人检测是计算机视觉中的一项重要任务,广泛应用于自动驾驶、智能监控、安防系统等领域。尤其是在夜间行人检测的场景中,由于光线条件差、物体对比度低,检测难度更大。传统的基于特征的检测方法容易受到环境光线的干扰,表现出较低的精度。而随着深度学习技术的发展,基于卷积神经网络(CNN)的目标检测算法在此类任务上表现出了显著优势。
YOLO(You Only Look Once)系列模型是目前最主流的目标检测方法之一,具有高效的实时检测能力。最新版本的YOLOv10结合了多个改进策略,在提高检测速度的同时,提升了小目标检测和复杂场景下的精度。因此,基于YOLOv10的夜视行人检测系统可以很好地适应低光照条件下的行人检测任务,适合用于自动驾驶和监控场景。
本文将详细介绍如何构建一个基于深度学习的夜视行人检测系统,使用YOLOv10模型、自定义的夜视行人数据集以及开发基于PyQt5的UI界面,支持用户通过图像或视频流实现实时行人检测。
目录
二、YOLOv10 概述
YOLOv10 是 YOLO 系列模型的最新版本,它结合了深度学习领域的最新技术改进,能够有效地检测图像中的多个目标,并且计算效率极高。与其他目标检测