1. 引言
在现代农业领域,随着科技的进步,越来越多的人工智能(AI)技术开始被应用到农产品的质量检测和分类中。柠檬作为一种重要的水果,在全球范围内的农业生产和贸易中占据着重要地位。柠檬的等级检测在农业生产、分拣、销售过程中至关重要,传统的人工检测方法不仅耗时且容易出现错误。因此,借助深度学习技术来实现柠檬等级的自动化检测,成为提升生产效率和质量控制的有效手段。
本文将基于YOLOv8(You Only Look Once version 8)目标检测算法,结合PyQt5设计图形用户界面(UI),实现一个柠檬等级检测系统。该系统能够自动识别柠檬的外观特征,判断其等级(如优等品、次等品),并通过图像和视频流的方式进行实时检测。通过该系统,我们可以在农业生产过程中自动化地进行柠檬等级分类,提高检测的准确性和效率。
目录
2. 项目需求分析
2.1 项目目标
- 柠檬等级自动化检测