一、引言
随着现代科技的发展,深度学习技术在各个行业中得到了广泛应用,尤其是在农业领域,人工智能技术已经开始改变传统农业的面貌。通过使用深度学习模型,农场管理者可以实现对作物、动物的自动化监控和管理,提高生产效率、减少人工成本、优化资源配置。羊群计数作为农业动物监控的一项关键任务,传统方法通常依赖人工统计或者基础的图像处理技术,效率低且容易出错。基于深度学习的羊群计数系统则能够在复杂环境下自动识别羊群并统计数量,极大提升了自动化管理的水平。
本文将详细介绍如何基于YOLOv8(You Only Look Once)深度学习模型,结合Streamlit UI框架,构建一个羊群计数统计系统。系统将包括数据集收集与处理、YOLOv8模型训练与优化、UI界面设计及推理结果展示。我们将通过这篇博客实现一个完整的羊群计数系统,并提供完整的代码和操作步骤。
目录
二、系统概述
本系统的目标是构建一个能够自动识别和计数羊群数量的深度学习系统。系统的工作流程如下:
- 数据集准备:首先,收集并标注羊群图像数据集,用于训练深度学习模型。
- YOLOv8模型训练:在收集