基于YOLOv10的车辆品牌与型号识别

1. 引言

1.1 背景与动机

随着智能交通系统的快速发展,车辆识别技术在交通管理、安全监控以及自动驾驶等领域中扮演着重要角色。传统的车辆识别方法主要依赖于人工设计特征,但随着深度学习的进步,基于卷积神经网络(CNN)的方法已成为主流。特别是目标检测算法,如YOLO(You Only Look Once)系列,凭借其高效的实时性能和高准确度,已被广泛应用于车辆识别任务。

在车辆识别任务中,不仅需要检测车辆的位置,还需要识别车辆的品牌和型号。准确的品牌与型号识别对于交通执法、车主身份验证、停车管理等有重要意义。本文将介绍如何使用 YOLOv10 算法实现 车辆品牌与型号识别,并通过开发一个 UI界面 让用户能够上传图像,查看识别结果。


2. 数据集介绍

2.1 数据集概述

我们将使用 Vehicle Make and Model Dataset(车辆品牌与型号数据集)来进行训练和测试。该数据集包含了不同品牌和型号的车

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值