1. 引言
1.1 背景与动机
随着智能交通系统的快速发展,车辆识别技术在交通管理、安全监控以及自动驾驶等领域中扮演着重要角色。传统的车辆识别方法主要依赖于人工设计特征,但随着深度学习的进步,基于卷积神经网络(CNN)的方法已成为主流。特别是目标检测算法,如YOLO(You Only Look Once)系列,凭借其高效的实时性能和高准确度,已被广泛应用于车辆识别任务。
在车辆识别任务中,不仅需要检测车辆的位置,还需要识别车辆的品牌和型号。准确的品牌与型号识别对于交通执法、车主身份验证、停车管理等有重要意义。本文将介绍如何使用 YOLOv10 算法实现 车辆品牌与型号识别,并通过开发一个 UI界面 让用户能够上传图像,查看识别结果。
2. 数据集介绍
2.1 数据集概述
我们将使用 Vehicle Make and Model Dataset(车辆品牌与型号数据集)来进行训练和测试。该数据集包含了不同品牌和型号的车