引言
随着自动驾驶技术的不断发展,计算机视觉在智能交通系统中的作用日益重要。在这些系统中,目标检测(Object Detection)是最为基础和核心的任务之一。通过高效、精确的目标检测系统,自动驾驶汽车可以识别道路上的行人、车辆、摩托车及交通标志等信息,从而保证安全驾驶并优化行车路线。为了实现这一目标,我们可以使用深度学习中的目标检测技术。
在本文中,我们将基于YOLOv8(You Only Look Once Version 8)模型实现对VIPER数据集的目标检测。VIPER数据集包含了多种类型的交通目标,包括行人、车辆、摩托车以及交通标志,我们将使用YOLOv8对这些目标进行检测,并实现一个基于PyQt5的UI界面,实时展示检测结果。本文将详细介绍数据集的处理、模型训练、UI界面的构建以及完整代码实现。
一、VIPER数据集介绍
1.1 VIPER数据集概述
**VIPER(Vehicle, Pedestrian, and Traffic sign Recognition)**数据集是一个专门为智能交通系统和自动驾驶研究而设计的数据集。它包括多个城市交通环境中的不同类别