引言
行人检测和行为识别是计算机视觉领域的重要研究方向,尤其是在智能交通系统、自动驾驶、安防监控等领域有着广泛应用。随着深度学习的迅猛发展,目标检测技术取得了显著进展,尤其是YOLO(You Only Look Once)系列模型,成为了目标检测领域的重要工具。
YOLOv8作为YOLO系列中的最新版本,在精度和速度上都有了显著的提升,特别适用于实时目标检测任务。本文将通过JAAD(JAAD: Joint Attention for Action Detection)数据集,展示如何使用YOLOv8进行行人行为检测。我们将重点讲解数据集介绍、YOLOv8的训练、模型推理、UI界面的实现等内容,并提供完整的代码示例,帮助读者实现一个行人行为检测系统。
一、JAAD数据集概述
1.1 数据集介绍
JAAD(Joint Attention for Action Detection)数据集是一个专门用于行人行为识别的数据集,包含了丰富的交通场景和行人过马路的行为数据。该数据集主要用于研究行人在不同环境下的行为预测,尤其是在过马路这一复杂场景中的行为识别。
JAAD数据集的主要特点包括:
- 多样的场景和天气条件:数据集包含了晴天、雨天、白天、夜间等不同