基于YOLOv8与UI界面的行人行为检测:以JAAD数据集为例

引言

行人检测和行为识别是计算机视觉领域的重要研究方向,尤其是在智能交通系统、自动驾驶、安防监控等领域有着广泛应用。随着深度学习的迅猛发展,目标检测技术取得了显著进展,尤其是YOLO(You Only Look Once)系列模型,成为了目标检测领域的重要工具。

YOLOv8作为YOLO系列中的最新版本,在精度和速度上都有了显著的提升,特别适用于实时目标检测任务。本文将通过JAAD(JAAD: Joint Attention for Action Detection)数据集,展示如何使用YOLOv8进行行人行为检测。我们将重点讲解数据集介绍、YOLOv8的训练、模型推理、UI界面的实现等内容,并提供完整的代码示例,帮助读者实现一个行人行为检测系统。

一、JAAD数据集概述

1.1 数据集介绍

JAAD(Joint Attention for Action Detection)数据集是一个专门用于行人行为识别的数据集,包含了丰富的交通场景和行人过马路的行为数据。该数据集主要用于研究行人在不同环境下的行为预测,尤其是在过马路这一复杂场景中的行为识别。

JAAD数据集的主要特点包括:

  • 多样的场景和天气条件:数据集包含了晴天、雨天、白天、夜间等不同
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

YOLO实战营

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值