一、引言
随着智能交通、安防监控和自动驾驶技术的快速发展,多目标跟踪与分割(MOTS, Multiple Object Tracking and Segmentation)成为了计算机视觉中的一个重要研究领域。MOTS任务结合了目标检测、目标跟踪以及目标分割的多项技术,用于在视频中追踪多个目标的运动轨迹并进行精确分割。与传统的目标检测任务不同,MOTS不仅需要检测目标的位置,还需要追踪其在视频序列中的运动状态,并对目标进行像素级分割。
在本文中,我们将使用YOLOv5模型,结合深度学习中的目标检测、目标跟踪和目标分割技术,构建一个完整的MOTS系统,适用于行人和车辆等类别。我们还将开发一个图形用户界面(UI),使得用户可以通过上传视频文件,实时展示检测与跟踪结果。
二、项目概述
2.1 项目目标
本项目的主要目标是通过YOLOv5模型,构建一个能够进行多目标跟踪与分割的系统。具体目标如下:
- 数据集准备:选择适合MOTS任务的公开数据集,并进行数据预处理。
- YOLOv5训练:利用YOLOv5进行多目标检测训练。
- 目标跟踪与分割:在YOLOv5的基础上,结合深度学习的目标跟踪与分割技术,输出目标的轨迹和像素级分割结果。
- UI界面开发:开发图形用户界面,使用户可以上传
订阅专栏 解锁全文
631

被折叠的 条评论
为什么被折叠?



