基于YOLOv5的FLIR热成像数据集目标检测:行人、车辆与建筑物检测

引言

随着深度学习技术在计算机视觉领域的不断发展,热成像技术已经被广泛应用于各种安全监控、自动驾驶以及智能交通等领域。热成像图像不仅能够提供传统可见光图像无法实现的视觉信息,还能在低光或夜间环境中提供清晰的场景理解。通过红外热成像,我们可以获取物体表面温度分布,进而推断出物体的种类和特征,这在恶劣环境下的目标检测中具有巨大的优势。

FLIR(Forward Looking Infrared)热成像数据集是专门为计算机视觉中的目标检测任务而设计的,包括行人、车辆、建筑物等多个类别,特别适用于低光或夜间条件下的目标检测任务。本文将介绍如何使用YOLOv5模型进行FLIR热成像数据集的目标检测,并通过Flask构建一个简单的Web应用来展示检测结果。

目录

  1. FLIR热成像数据集概述
  2. YOLOv5模型概述
  3. 数据预处理与标注转换
  4. YOLOv5模型训练与调优
  5. 目标检测算法实现
  6. UI界面与实时展示
  7. 总结与展望

一、FLIR热成像数据集概述

1.1 数据

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值