引言
随着深度学习技术在计算机视觉领域的不断发展,热成像技术已经被广泛应用于各种安全监控、自动驾驶以及智能交通等领域。热成像图像不仅能够提供传统可见光图像无法实现的视觉信息,还能在低光或夜间环境中提供清晰的场景理解。通过红外热成像,我们可以获取物体表面温度分布,进而推断出物体的种类和特征,这在恶劣环境下的目标检测中具有巨大的优势。
FLIR(Forward Looking Infrared)热成像数据集是专门为计算机视觉中的目标检测任务而设计的,包括行人、车辆、建筑物等多个类别,特别适用于低光或夜间条件下的目标检测任务。本文将介绍如何使用YOLOv5模型进行FLIR热成像数据集的目标检测,并通过Flask构建一个简单的Web应用来展示检测结果。
目录
- FLIR热成像数据集概述
- YOLOv5模型概述
- 数据预处理与标注转换
- YOLOv5模型训练与调优
- 目标检测算法实现
- UI界面与实时展示
- 总结与展望