1. 引言
随着计算机视觉和深度学习技术的飞速发展,目标检测技术在各种应用场景中得到了广泛应用。在这些应用中,传统的RGB图像检测已经取得了显著的进展。然而,在低光照、雾霾、夜间等恶劣环境下,RGB图像的目标检测效果往往受到限制。因此,热成像技术应运而生,利用热成像摄像机拍摄到的红外热图像进行目标检测,克服了可见光图像的局限性。
FLIR Thermal Dataset是一个包含热图像的开源数据集,专门用于训练目标检测模型,数据集中的图像包含了三种主要类别:行人、车辆和建筑物。该数据集为目标检测研究提供了一个新的视角和挑战,尤其是在低光环境下,目标检测变得更加困难。
本文将通过使用YOLOv10模型,结合FLIR Thermal Dataset进行热图像的目标检测,并通过UI界面展示模型的检测效果。YOLOv10以其高效和准确的特性,非常适合用于实时热图像的目标检测。
2. FLIR Thermal Dataset概述
FLIR Thermal Dataset 是由FLIR公司提供的一个包含热成像图像的数据集。该数据集主要用于红外图像的目标检测,帮助研究人员解决在低光照或完全黑暗环境下进行目标检测的问题。数据集包含了多个类别的目标,本文专注于以下三个主要类别: