基于YOLOv10与FLIR Thermal Dataset的热图像目标检测研究与应用

1. 引言

随着计算机视觉和深度学习技术的飞速发展,目标检测技术在各种应用场景中得到了广泛应用。在这些应用中,传统的RGB图像检测已经取得了显著的进展。然而,在低光照、雾霾、夜间等恶劣环境下,RGB图像的目标检测效果往往受到限制。因此,热成像技术应运而生,利用热成像摄像机拍摄到的红外热图像进行目标检测,克服了可见光图像的局限性。

FLIR Thermal Dataset是一个包含热图像的开源数据集,专门用于训练目标检测模型,数据集中的图像包含了三种主要类别:行人、车辆和建筑物。该数据集为目标检测研究提供了一个新的视角和挑战,尤其是在低光环境下,目标检测变得更加困难。

本文将通过使用YOLOv10模型,结合FLIR Thermal Dataset进行热图像的目标检测,并通过UI界面展示模型的检测效果。YOLOv10以其高效和准确的特性,非常适合用于实时热图像的目标检测。

2. FLIR Thermal Dataset概述

FLIR Thermal Dataset 是由FLIR公司提供的一个包含热成像图像的数据集。该数据集主要用于红外图像的目标检测,帮助研究人员解决在低光照或完全黑暗环境下进行目标检测的问题。数据集包含了多个类别的目标,本文专注于以下三个主要类别:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

深度学习YOLO目标检测实战项目

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值