引言
随着零售业态的数字化转型,智能货架系统逐渐成为现代商超、便利店等零售场所的核心设施之一。智能货架不仅提升了购物体验,还有效地解决了传统人工管理所带来的库存缺货问题。特别是在智能货架缺货检测中,借助计算机视觉和深度学习技术,可以实时监测货架上的商品状态,自动识别并报告缺货情况,进而减少库存损失并提高货架管理的效率。
本博客将结合YOLOv5(You Only Look Once,版本5)目标检测模型,详细探讨如何实现智能货架的缺货检测,并开发UI界面进行展示。文章将包括整个项目的技术框架、数据集处理、模型训练、UI界面设计等多个方面,提供一套完整的解决方案,并附上相关代码实现。
1. 项目背景与目标
在传统的货架管理中,店铺工作人员需要定期巡检以确保货架上的商品数量准确,缺货情况能够及时处理。然而,这种人工检查方式不仅耗时且容易出现疏漏。智能货架的目标是通过计算机视觉技术,实时监控货架,检测商品的缺货情况,自动生成报警信息并通过UI界面展示。
该项目的主要目标是:
- 使用YOLOv5进行实时商品检测。
- 通过YOLOv5识别商品并检测其缺货状态。
- 开发UI界面,展示商品检测结果以及缺货警告信息。
- 提供一套完整的代码实现和数据集处理流程。