概述
大型活动(如音乐会、体育赛事、集会等)中人群密度的监控与分析是保障公共安全的关键任务之一。近年来,随着人群规模的不断扩大,发生踩踏事故的风险也逐渐增加,严重威胁着参与者的生命安全。传统的安保手段往往依赖于人工监控和传统摄像头录像回放,但这些方式存在反应慢、难以及时发现风险等问题。因此,利用深度学习技术进行人群密度分析,预测潜在的踩踏风险,已经成为提升安全管理效率的有效方法。
本文将介绍如何利用YOLOv10(You Only Look Once v10)目标检测模型进行人群密度分析,结合Python、PyQt5开发UI界面,实时对大型活动中的人群密度进行监测,并预测可能的踩踏风险。本文将详细阐述如何搭建环境、选择数据集、进行模型训练与优化,以及如何结合UI界面实现实时检测与预警系统。
1. 深度学习基础与YOLOv10模型概述
深度学习基础
深度学习是一种使用多层神经网络模拟人脑进行特征学习的技术。它广泛应用于计算机视觉、自然语言处理等领域。在计算机视觉中,卷积神经网络(CNN)是最常用于图像分类、目标检测和图像生成的架构。通过训练深度神经网络,模型能够自动学习图像中的关键特征,实现精确的目