1. 项目背景与意义
随着城市安全和家庭安全需求的不断提升,基于视频监控的入侵者检测系统成为安防领域的重要研究方向。传统的入侵检测系统大多依赖于简单的运动检测或红外传感器,存在误报率高、识别能力弱的问题。利用深度学习,尤其是目标检测领域的先进算法如YOLO(You Only Look Once)系列,能够显著提升检测准确率和实时响应能力。
本项目旨在基于最新的YOLOv8模型,结合友好的用户界面,实现一套实时、准确的入侵者检测系统。该系统适用于家庭、企业等多种场景,具有较高的实用价值。
2. 技术选型与整体架构
2.1 技术选型
- 深度学习框架:PyTorch(YOLOv8官方基于PyTorch开发)
- 目标检测模型:YOLOv8
- UI界面开发:PyQt5(桌面应用)或Streamlit(Web应用)
- 数据处理:OpenCV,NumPy
- 数据集:结合公共的入侵者/异常行为检测数据集和自定义数据